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UDFCD Heavy Rainfall Guidance Tool – 
Upgrades for 2016 
Technical Memo 

OVERVIEW 
In early 2015, Dewberry designed a Heavy Rainfall Guidance Tool (hereafter, Tool) for the Urban Drainage and Flood Control 

District (UDFCD; hereafter, District). The main features of the Tool are to provide a high resolution distribution of the heavy 

rainfall threat, in both time and space, across the District. Additionally, the Tool’s probabilistic approach provides a measure of 

confidence that end-users can employ to help with decision making. The Tool’s 2015 performance was validated in the 2015 

Final Report (Dewberry, 2015) and showed encouraging results during its inaugural season, especially given the lack of any 

post-processing. The Report noted several potential avenues to improve Tool performance. UDFCD authorized this research & 

development in April 2016 and this Technical Memo summarizes the results of that effort. 

 

Suggested Refinements and Outcomes of this Memo 

For reference, the goals of this project, which are excerpted from the 2015 HRG Final Report (Dewberry, 2015) are italicized 

below, along with the outcome. 

 

Overall Outcome: A method of post-processing Tool output led to substantially more accurate and reliable forecasts of the 

probability of exceeding 1 inch per hour of rainfall. In addition, a consistent District-wide threat level was developed in order to 

characterize the overall threat by unifying the forecasts across all Forecast Zones. 

 

1. Assess model-by-model performance. Up to this point, it has been assumed that each of the 13 models contributing 

to the Tool is equally skillful. This is not necessarily the case, since model performance can vary strongly from model to 

model, often times even for apparently similar models. We propose investigating the data collected during the 2015 

season to separate models by their performance, and as necessary, weight them to use skillful models more heavily than 

less skillful ones. 

 

Benefit: We expect this to yield better reliability (see Location section), and potentially to reduce False Alarm Rates, 

especially if there are models that have a high bias on rainfall amounts. 

 

 Outcome: Correction of model climatology was implemented. Ensemble statistics (mean, max) served as key 

predictor of 1 inch per hour exceedance probability. However, model weighting was ruled out due to insufficient basis. 

 

2. Historically-based bias correction. A weather model has its own physical world, which often times does not 

exactly replicate the true physical world we live in. As such, many past studies have shown marked increases in model 

performance from bias correcting with actual observed data.  In Colorado, many operational forecast agencies use 

precipitable water (PW) to evaluate the heavy rainfall threat. Higher PWs can result in higher rainfall rates. Using 

statistical relationships based on the 2015 data collected as part of the Tool, we can develop objective bias-correction 

techniques of how to modify Tool rainfall intensities based on knowledge of the PW measurement. Note that there are 

several PW measuring sites in eastern Colorado that could be used for this analysis. 

 
Benefit: We expect that this may lead to a potentially substantial reduction in False Alarm rates, especially for 

marginal threat situations.  
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 Outcome: Observed and forecasted variables were tested for independent predictive skill. Ultimately, forecasted 

mid-afternoon wind speed was found to be a significant predictor and implemented in post-processing. 

 

DATA COLLECTION 
Observations 

The main focus of this effort is improvement in the Maximum Quantitative Precipitation Forecast (QPF-max), which is an 

essential part of the Tool. Of particular interest are instances where 1 hour rainfall amounts are expected to exceed 1 inch. A 

key limitation of this effort is that such rainfall intensities are rare in Colorado. For example, during 2015, over the 918 

observed (using both gage and radar data) zone-day 1-hour rainfall maximums (6 Forecast Zones x 153-day operational season 

= 918 observed zone-day rainfall maximums), only 71 (5.8%) experienced an hourly rainfall amount greater than or equal to 1 

inch.  

 

As model bias correction is strongly dependent on having a sufficient amount of validation data (Scheuerer 2014), two 

additional “buffer” zones were added to increase the number of observed events as shown in Figure 1. These were strategically 

located over relatively well-sampled areas, with the North Buffer zone being centered on Fort Collins and the South Buffer zone 

included Colorado Springs. The main benefit of including these zones is the potential to capture more heavy rainfall events 

outside the District that had similar meteorological properties to storms observed within the District and could have been 

observed there. 

 

The resulting benefit of these two “buffer” zones on supplementing very heavy rainfall statistics is dramatic. Table 1 shows the 

top ten hourly rain amounts with and without the inclusion of the buffer zones. When including the two buffer zones, 5 of the 

top 10 occurred within these zones, including the top 3 events. This was due to the exceptionally rainy months of May and June 

2015 observed over the Palmer Ridge, and in general over northeastern Colorado. The full seasonal evolution of 1-hour 

maximum rain amounts is shown in Figure 2. 

 

Table 1: Top 10 hourly rain amounts from 2015, with and without the inclusion of the two buffer zones 

shown in Figure 1. *Denotes events that were observed in both samples. 

With buffer 2.68 2.51 2.41 2.40* 2.31* 2.21 2.16* 1.82* 1.82 1.76* 

Without 2.40* 2.31* 2.16* 1.82* 1.76* 1.72 1.68 1.64 1.61 1.6 

 

Table 2 identifies the sources of observed and estimated rainfall data, hereafter collectively referred to as Quantitative 

Precipitation Estimates (QPE), that were collected for use in the ensuing model validation and bias correction. The first two 

datasets are gridded products that were converted to a common 0.04 degree grid spanning the forecast domain. Although 

NWS River Forecast Center QPE was obtained, it was found to perform significantly worse compared to NOAA Stage IV QPE 

(using 24-hour ALERT and CoCoRaHS rainfall data as ground truth) and was not used in this analysis. 

 

The last three datasets shown in Table 2 are from rain gages, of which the District’s ALERT data represented the highest spatial 

coverage with 195 actives sites across the region. It should be noted that the ALERT gages showed small amounts of 

precipitation from the delayed melting of hail in the rain bucket on days when no precipitation occurred.  As a result, the 

CoCoRaHS dataset was used to provide quality control of the ALERT data.  
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Figure 1: Location of the six Forecast Zones and two additional training zones (red) in respect to the District boundary. 

 

 

Table 2: Sources of observed and estimated rainfall. 

Name / Source Type Frequency Period Obtained 

River Forecast Center Gridded Daily 2015 only 

NOAA Stage IV Gridded Hourly Since 2002 

UDFCD ALERT Gage Bucket tip Since 2000 

CoCoRaHS Gage Daily Since 2000 

NOAA Integrated 

Surface Daily 

Gage Hourly Since 2000 

 

As in the 2015 Final Report (Dewberry 2015), daily maximum hourly rain amounts were found for each of the six Forecast 

Zones and two buffer zones shown in Figure 1 using the ALERT data and the Stage IV data. The higher of the two estimates for 

each day was used to account for (i) storms that reached peak intensity between ALERT gages (where Stage IV should have 

higher values) and (ii) instances where Stage IV underestimated rain rates since this product does not always use ALERT data 

during its gage-correction step. Figure 2 shows the resulting daily evolution of the maximum hourly rain amounts across the 

District as well as the buffer zones. The beginning of the 2015 warm season was very rainy across the entire Front Range of 

Colorado (both within the District’s Forecast Zones as well as the buffer zones) with numerous days experiencing rainfall 

amounts exceeding 1 inch. The 2015 warm season was also unusual in that most of the heavy rainfall days occurred prior to 
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July 1st, whereas climatology would suggest that July and August are the prime months for heavy rainfall (discussed later; see 

Table 6). 

 

 

Figure 2: The daily maximum hourly rain amount for the 2015 season within the District (blue) and in the buffer zones (red). 

The 1.00 inch per hour threshold (dashed line) was of particular significance for the Tool. 

 

In addition to rainfall data, Table 3 shows other atmospheric parameters that were collected to determine their potential use in 

providing additional predictive skill during the Tool’s post-processing. For example, it is known that high values of Integrated 

Precipitable Water (IPW), a measure of total atmospheric moisture content, can have an impact on rainfall rates (e.g. Kuo et 

al., 1993; Hammill et al., 2004). Additionally, it was hypothesized that wind speed could potentially modulate heavy rainfall 

rates: for example, stronger mid-level winds could result in faster storm motions (lower storm residence times) that limits 

rainfall intensities at a given locale.  

 

Table 3: Sources of other observed atmospheric parameters. 

Name / Source Frequency Time Coverage Notes 

NOAA GPS Integrated 

Precipitable Water (IPW) 

15-min Since 2000 Used the Skaggs Research Center 

site (Boulder, CO) 

Denver radiosonde 2x daily (6AM, 

6PM MDT) 

Since 2000 Included temperature, wind 

speed/direction and humidity 

 

Forecasts 

The Tool uses Quantitative Precipitation Forecasts (QPF) from a variety of operational and research modeling centers. Table 4 

provides a summary of each modeling center and the models that it contributes. Up to thirteen models were available during 

2015 for the morning update (posted 8AM MDT), and an additional four models were available by the afternoon update 

(posted 12PM MDT).  Even though all analyses presented in this Memo are for the morning update, for operational 

purposes, the findings will be applicable to all models. [During real-time operations, not all models were available for each 

day, but at least four models were available 152 out of 153 days (99.3%) and at least 10 models were available on 139 days 

(90.8%).]  Table 4 also categorizes each ensemble into a model “family” that was used for aggregating statistics of similarly 

structured models. In other words, ensembles arising from the same model family are expected to be statistically independent 
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from each other on the basis that their outcome is dependent only on the initial atmospheric conditions and not the model 

physics and dynamics. To assign model families, we take a conservative approach, yielding six model families, based on the 

“dynamical core” of the Weather and Research Forecasting (WRF) model used, as well as separating by modeling center. Given 

additional research, it may be possible to consolidate this further (yielding expanded statistics for each “family”), but this is not 

attempted at this time. 

 

The main input obtained from the ensembles in Table 4 is hourly QPF data across the UDFCD area. This results in a 4-

dimensional raster (ensemble, time, latitude and longitude) from which processed statistics are determined and output to the 

Tool’s web-based visualization. There are two key statistics that warrant further description.  The first statistic is referred to as 

QPF-max, or the maximum QPF across a certain dimension or dimensions of the entire dataset. For example, one key Tool 

output is the hourly QPF-max across all ensembles for all 24 hours of a given day: this is what is shown in the Tool’s 

“Maximum 1-hour rainfall” map. The other key statistic or Tool output is the probability of exceeding 1 inch per hour of 

precipitation at any time during the 24-hour period for each Forecast Zone; hereafter, this is referred to as POP1 (Probability 

Of Precipitation exceeding 1 inch in one hour). 

 

Table 4: Sources of QPF data. 

Modeling center Ensembles 

(Model/Family) 

Total ensembles 

National Severe Storms Laboratory (NSSL)# 1. arw  /  A 

2. arw-ctl  /  A 

3. arw-p1  /  A 

4. arw-n1  /  A 

5. arw-p2  /  A 

6. nmb-ctl  /  B 

7. nmb-n1  /  B 

8. nmb-p1  /  B 

9. nmb-p2  /  B 

9 

National Centers for Environmental Prediction  (NCEP)+ 10. hires-arw / C 

11. hires-nmm / D 

12. namnest-00Z / E 

13. namnest-06Z / E 

4 

National Center for Atmospheric Research (NCAR)# 10 members (#14-23) 

Family: F 

10* 

#Research / operational center 

+Operational center 

*Not used in 2015 operations, only for testing 

Total Ensembles 13 (ops) 

23 (ops + testing) 

 

In addition to precipitation, it is reasonable to expect that forecasted atmospheric variables may provide predictive skill for 

heavy rainfall forecasts. In order to investigate this, we obtained several atmospheric variables from archived 15-hour forecast 

data from the 06Z (12AM MDT) operational NCEP GFS model; this corresponds to the 3PM MDT forecast, which coincides 

with peak activity in heavy rainfall activity across the District (Dewberry, 2015). The following variables were obtained: 

300mb, 500mb and 700mb meridional and zonal winds, which were used to determine wind speed and direction, and 

precipitable water.  
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ANALYSIS 
Verification Metrics 

The use of several verification metrics is required given the complex nature of verifying rainfall forecasts, especially when 

probabilities are involved (Centre for Australian Weather and Climate Research, 2014). Table 5 shows the verification metrics 

that are used to compare the overall reliability of the Tool before and after the refinements discussed in this report. Each 

metric provides valuable information, and overall conclusions are made by considering all metrics together (see Flood Control 

District of Maricopa County’s 2015 Report for an application in an operational setting). 

 

Table 5: Description of the verification metrics used for comparing forecast performance. 

Metric Description Notes 

Equitable Threat Score 

(ETS) 

Assess forecast performance on an event by event basis 

using hits, misses and false alarms. 

Non-probabilistic; ranges from -1/3 

to 1 with skill shown by higher values  

Brier Skill Score (BSS) The probabilistic mean square error, compared to 

using simple climatology (Murphy, 1973). 

Probabilistic; ranges from 1 (no skill) 

to 0 (no error) 

Reliability Diagram (RD) Compares how well the forecasted probability matches 

the observed frequency of occurrence (Brocker and 

Smith, 2007). A good companion with ROC. 

Probabilistic; perfect relationship is a 

line with a slope of 1 

Relative Operating 

Characteristics (ROC) 

diagram 

Compares the false alarm rate (“false positive”) with 

the probability of detection (“true positive”) as a 

function of increasing higher probabilities. A good 

companion to RD. 

Probabilistic; perfect relationship is a 

straight line with the true positive 

increasing while the false positive is 

0; no skill is a line with a slope of 1 

 

Approach 

With the probabilistic focus of the Tool, a natural choice for post-processing is through the use of a logistic regression: 

 

(1)     𝑌 = [1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑛𝑋𝑛)]
−1

. 

 

In this equation, Y is the probability of exceedance of a certain rainfall intensity threshold based on continuous or discrete 

predictors X1, X2 … Xn and their corresponding coefficients  β1, β2 … βn and intercept β0. Specifically, the Tool currently has four 

thresholds:  

 1.0 inch in 1 hour,  

 2.5 inches in 3 hours,  

 3.5 inches in 6 hours and  

 4.5 inches in 24 hours. 

This Memo focuses on the first threshold, namely exceeding 1.0 inch in 1 hour (POP1), which is arguably the 

most important threshold for the District since it captures the essence of most flash flood threats. It is 

expected that most findings herein will either directly or indirectly apply to the other three thresholds; however, a detailed 

consideration of these thresholds is bypassed in order to do gain a better understanding of the hourly rainfall characteristics. 

 

In order to demonstrate how equation (1) can be applied, Figure 3 shows the dependence of maximum hourly rain rates on the 

morning (8AM MDT) Integrated Precipitable Water (IPW) at the Boulder GPS-IPW site. This figure uses ALERT data from the 

2000-2015 period, resulting in a large sample size of 2,295 days. Note that ALERT data is separated in a binary fashion: a 1 is 

assigned if 1.00 inch per hour was exceeded on a given day, a 0 is assigned if it was not. The regression results are shown in the 

table below, where β0 represents the intercept and β1 represents the constant associated with the IPW (X1). 
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Coefficient Value Std. Error Confidence 

β0 -7.95 0.45 >99% 

β1 6.15 0.46 >99% 

 

In order to demonstrate the usefulness of these results, the probability of exceeding 1 inch per hour anywhere in the District is 

estimated assuming a morning Boulder IPW of 1.0 and 1.2 inches. Using 1.0 inch in equation (1) produces Y (POP1) = 0.14 or a 

14% chance of exceeding 1 inch in 1 hour; an IPW of 1.2 implies a 36% chance of exceedance. The regression coefficient [β1 in 

equation (1)] of 6.15, which is significant at the 99% confidence level, signals a strong relationship, implying that for every 1 

inch increase in the IPW value, there is a greater than 6-fold increase in the chance of observing a rainfall intensity of 1 inch 

per hour across the District. Even though the estimated regression is predictive in nature (note that we are using the morning 

IPW information whereas heavy rainfall is almost always observed later in the day), it still needs to be demonstrated that this 

information can provide independent predictive skill compared to the QPF data already being used in the Tool. Stated 

differently, since the Tool uses QPF from models that presumably ingest this IPW information, it may be the case that the QPF 

alone already incorporates the full predictive value of the IPW.  

 

 

Figure 3: Predictive skill between morning IPW at Boulder and 1 inch per hour rainfall rates across the District. 

 

Factors Impacting Heavy Rainfall Across the District 

The District spans a complex terrain which plays a key factor in its hydrometeorological characteristics. Two of the most 

notable of these characteristics are seasonality and spatial variation. Regarding seasonality, Table 6 shows that heavy rainfall 

probabilities across the District (using ALERT data over the 2000-2015 period) show marked variability between months with 

values rapidly increasing from May through July and then decreasing into August and September. Although we considered 

incorporating seasonality into the analysis, there were two main reasons why this was not done: (i) any sub-dividing of 2015 

statistics (recall that unfortunately we only have QPF for 2015) would result in such a small dataset that sufficiently rigorous 

results would be difficult to validate, and (ii) historically-speaking, 2015 was quite unusual in that many of the 1.00 inch+ 

hourly rainfall amounts occurred during May and June (see Figure 2). However, we believe that any subsequent Tool 

refinement take into account seasonality given that additional data will be available then. 
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Table 6: Impact of seasonality on heavy rainfall 

occurrence using 2000-2015 ALERT data. 

 Daily probability of exceeding (in/hr): 

Month 0.50 0.75 1.00 

May 10% 5% 3% 

June 16 7 4 

July 31 20 14 

August 27 13 7 

September 8 4 4 

 

Regarding spatial variation, Figure 4 shows the 100-year 1-hour rainfall intensity from NOAA Atlas 14 across the District. The 

variability is significant, with topography serving as the main controlling factor. High elevation regions in Forecast Zones A & 

B have values as low as 1.50 inches per hour in the highest elevations, while the lower elevation regions (C-F) reveal values 

ranging from just under 2.00 inches per hour to as high as 2.80 as one moves east. To account for this variability, certain 

portions of our analysis separated the high elevation zones (A, B) from the low elevation zones (C-F). 

 

 

Figure 4: Estimates of 1-hour 100-year rainfall across the District using NOAA Atlas 14 Volume 8.2. 

 

Model Performance 

During the development of the Tool, each of the 13 ensemble members was given equal weight when generating the final 

output.  In order to explore the validity of this assumption, Table 7 shows basic model performance statistics for each model, as 

well as the model ensemble mean and maximum. This was calculated by finding QPF-max for each model for each zone and 

the observed max rainfall, and then concatenating all zones into a single large time series. Alternatively, a similar table was 

produced for District-wide statistics but is not shown here because results were similar.  The metrics in Table 7 are (in order of 

the columns): 

 

Bias: The mean difference between observed and forecasted values. 

Mean Absolute Error [MAE]: The mean absolute difference between observed and forecasted values. 
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Pearson correlation [Cor (p)]: Typical measure of correlation. 

Spearman correlation [Cor (s)]: A different measure of correlation that is based on rank and not values. 

Hit rate: Fraction of days the model correctly forecasted (or did not forecast) QPF-max exceeding 1.00 inch per hour. 

False alarm rate [FA]: Fraction of days the QPF-max exceeding 1.00 inch per hour but that did not occur. 

Miss rate: Fraction of days 1.00 per hour QPE was observed but was not forecasted. 

Equitable Threat Score [ETS]: Uses 1.00 inch per hour as threshold. See Table 5 for description. 

 

Table 7: Verification table for raw QPF data over the entire Forecast Zone region. Ensemble mean and max statistics are 

shown twice: the first values include only the 13 ensembles used during the 2015 operational season; the second values 

include all 23 ensembles. Red and green shading denotes models with notable (exceeding 0.1 inch) underestimate or 

overestimate biases, respectively. 

Ens # Bias MAE Cor (p) Cor (s) Hit FA Miss ETS 

1  -0.04 0.28 0.61 0.73 0.8 0.04 0.15 0.17 

2  0.03 0.31 0.61 0.68 0.83 0.06 0.12 0.28 

3  -0.10 0.29 0.60 0.68 0.81 0.03 0.16 0.15 

4  -0.10 0.29 0.59 0.74 0.78 0.02 0.20 0.09 

5  -0.07 0.29 0.62 0.75 0.8 0.04 0.16 0.15 

6  -0.05 0.29 0.61 0.71 0.82 0.06 0.12 0.26 

7  -0.03 0.29 0.64 0.73 0.81 0.06 0.13 0.25 

8  -0.04 0.29 0.61 0.70 0.82 0.04 0.14 0.24 

9  -0.04 0.3 0.59 0.72 0.81 0.04 0.15 0.18 

10  -0.18 0.32 0.58 0.72 0.77 0.03 0.21 0.09 

11  0.02 0.31 0.61 0.72 0.82 0.05 0.13 0.25 

12  0.35 0.47 0.71 0.8 0.78 0.18 0.03 0.39 

13  0.4 0.54 0.62 0.78 0.77 0.19 0.04 0.34 

Ens mean 0.02 0.26 0.7 0.81 0.83 0.05 0.12 0.29 

Ens max 0.66 0.72 0.67 0.76 0.69 0.29 0.02 0.26 

14  -0.22 0.33 0.54 0.67 0.78 0.01 0.20 0.09 

15  -0.26 0.34 0.57 0.67 0.78 0.01 0.22 0.07 

16  -0.24 0.33 0.55 0.66 0.80 0.01 0.20 0.11 

17  -0.23 0.34 0.53 0.67 0.76 0.02 0.22 0.04 

18  -0.21 0.34 0.53 0.65 0.78 0.01 0.21 0.07 

19  -0.19 0.30 0.64 0.73 0.82 0.01 0.18 0.18 

20  -0.20 0.35 0.49 0.60 0.78 0.02 0.20 0.09 

21  -0.22 0.32 0.59 0.70 0.79 0.02 0.19 0.12 

22  -0.18 0.32 0.58 0.69 0.79 0.02 0.19 0.11 

23  -0.21 0.32 0.59 0.68 0.80 0.01 0.19 0.12 

Ens mean -0.09 0.25 0.72 0.80 0.82 0.01 0.17 0.19 

Ens max 0.68 0.74 0.67 0.76 0.68 0.30 0.02 0.25 

 

Table 7 shows that despite some experience during 2015 that seemed to suggest certain models perform better than others, 

there was no objective evidence to support this claim. For example, Models 12 and 13 had the highest bias, but had high 

correlation and particularly high ETS, thus leaving no basis to remove them or lower their weighting. Furthermore, all of the 

NCAR ensembles (14-23) had significant underestimate biases but also had the lowest false alarm rates, though their ETS was 

the lowest. One important caveat from Table 7 was that it does not show any information about model climatology.  
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In order to fairly compare the models head-to-head, there is a need to bring all models onto a consistent climatology. This was 

done by employing a quantile-quantile mapping approach (Scheuerer, 2014) where the QPF-max climatology for each zone 

using each model family was determined. Values for each zone were then concatenated, ranked and compared to observations. 

Note that this does not seek to explore “how well each model performs from day to day” but instead “how well the model world 

compares to the real world over the course of the entire season”. Two additional steps were required to accomplish this. First, 

to be consistent with the known climatology (Figure 4), Forecast zones were separated into two-groups: the high-elevation 

zones (A, B) and the low-elevation zones (C-F). Second, instead of producing a quantile map for each model separately, models 

were grouped into their respective families. The result for the low-elevation zones is shown in Figure 5 as a “Q-Q plot”, which 

compares the ranked model climatology of QPF-max to their respective observations [a similar result was seen for the high-

elevation zones though with lower values]. There are several clear findings: models belonging to the E family are much too wet, 

while most of the other models are either on par with observations or slightly too dry. The exception are families C and F, 

which are notably drier than observations. 

 

 

Figure 5: Quantile-Quantile (Q-Q) plot for the low-elevation zones (C-F) comparing model hourly rainfall intensity with 

observations as a function of model family (see Table 4). 

 

After correcting model climatology using quantile mapping (where each QPF-max is “mapped” to its bias-corrected 

observational position using Figure 5), Table 8 shows that model performance is now more uniform across all models. 

Furthermore, quantile mapping has actually increased overall skill. Note that 18 of 23 models have a higher 1 inch in 1 hour 

ETS; in addition, 19 of 23 have a higher 0.75 inch in 1 hour ETS (not shown). These results confirm that after applying 

corrections using quantile mapping, no objective basis was found to support the weighting of models. Finally, Table 8 reveals 

that the model ensemble mean performs as well or better than any individual model. This key concept was leveraged during 

the ensuing post-processing method development. 
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Table 8: Same as Table 7 except after quantile mapping (see text for description). 

Ens # Bias RMSE Cor (p) Cor (s) Hit FA Miss ETS 

1  0.02 0.3 0.60 0.73 0.82 0.07 0.11 0.25 

2  0.11 0.35 0.60 0.68 0.80 0.12 0.08 0.28 

3  -0.06 0.3 0.59 0.68 0.80 0.04 0.16 0.13 

4  -0.05 0.3 0.58 0.74 0.79 0.07 0.14 0.21 

5  -0.02 0.3 0.61 0.74 0.81 0.05 0.14 0.21 

6  0.02 0.32 0.60 0.71 0.80 0.09 0.11 0.25 

7  0.04 0.33 0.62 0.73 0.82 0.08 0.10 0.26 

8  0.01 0.31 0.61 0.70 0.82 0.07 0.11 0.28 

9  0.02 0.33 0.57 0.72 0.80 0.06 0.14 0.17 

10  -0.02 0.32 0.57 0.71 0.77 0.08 0.15 0.17 

11  0 0.32 0.60 0.72 0.82 0.04 0.14 0.26 

12  -0.01 0.28 0.69 0.80 0.84 0.05 0.11 0.40 

13  0.02 0.32 0.60 0.78 0.81 0.09 0.10 0.29 

Ens mean 0 0.26 0.69 0.80 0.82 0.06 0.12 0.28 

Ens max 0.43 0.52 0.66 0.73 0.73 0.24 0.03 0.30 

14  -0.05 0.32 0.56 0.66 0.80 0.05 0.15 0.19 

15  -0.11 0.32 0.57 0.67 0.81 0.03 0.16 0.18 

16  -0.08 0.32 0.55 0.66 0.78 0.06 0.16 0.19 

17  -0.06 0.32 0.53 0.67 0.79 0.05 0.16 0.18 

18  -0.02 0.34 0.55 0.65 0.80 0.07 0.13 0.22 

19  0 0.33 0.64 0.73 0.82 0.05 0.13 0.28 

20  -0.02 0.37 0.49 0.60 0.78 0.08 0.14 0.21 

21  -0.04 0.31 0.59 0.7 0.81 0.06 0.13 0.24 

22  0.01 0.33 0.59 0.69 0.80 0.07 0.13 0.23 

23  -0.03 0.31 0.59 0.68 0.82 0.06 0.12 0.28 

Ens mean -0.02 0.25 0.71 0.80 0.84 0.02 0.14 0.29 

Ens max 0.55 0.61 0.68 0.73 0.68 0.31 0.01 0.25 

 

Developing a post-processing method 

The exploratory data analysis steps described previously were geared towards providing insight into the ultimate question: 

compared to simply using raw QPF data as was done during 2015, can Tool output be post-processed to produce more 

reliable and accurate forecasts of POP1? This question was investigated by testing a logistic regression equation given a variety 

of potential predictors. Equation development was guided by the following findings: 

 

1. Are there optimal predictor(s) based solely the Tool’s QPF ensemble? 

One notable limitation of using raw ensemble forecast probabilities is that due to a finite number of models, the full 

distribution may be underrepresented. Figure 6 shows an example of this for May 6th, 2015, for the entire forecast domain. 

Note that the highest hourly rain rates from the ensemble are between 1.4 and 1.5 inches. However, higher rain rates may have 

been forecasted if additional ensembles were included. Because running additional ensemble simulations, especially at such 
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high resolution, is computationally taxing, several well-documented alternate methods have been proposed to address this 

limitation. Two such methods were considered here: the “ensemble model-output statistics” approach (Scheuerer 2014; also 

Scheuerer and Hamill 2015) and a logistic regression approach (Hamill et al. 2004). The latter approach was chosen here due 

to its mathematical simplicity, lesser need for a longer training dataset as well as favorable performance compared to other 

methods as described by Wilks and Hamill (2007) and Scheuerer (2014). 

 

 

 

Figure 6: Example of max hourly rain rates from the QPF ensemble for May 6, 2015 across all Forecast Zones. 

 

We seek to find optimal predictors of the hourly QPF-max given the ensemble statistics. Using Hamill et al. (2004) as 

guidance, the ensemble mean of the daily 1-hour QPF-max was chosen as a predictor. This was used for each Forecast 

Zone as well as all Forecast Zones together. The rationale for using this variable can be seen from Tables 7 and 8, which reveals 

that the ensemble mean shows a higher ETS than most of the ensemble members individually. Note that due to strong 

correlation between Forecast Zones, the overall POP1 estimate across all zones is not simply the sum of the POP1’s in each 

Forecast Zone. For example, if a heavy rainfall producing storm develops in the eastern part of Zone B, there is a significant 

chance that it spreads to Zones C and/or F with 1 inch per hour rainfall exceeded in multiple zones.  

 

In addition to the ensemble mean value, we also found that using the maximum 1-hour QPF-max across all Forecast 

Zones was also a strong predictor of the max 1-hour rain rate for each zone. The explanation for this is that although each 

ensemble cannot exactly place the position of heavy rain-producing storms, using pooled “neighborhood” information 

increases the probabilistic prediction skill for any particular zone. This approach is similar to that described by Scheuerer 

(2014). 

 

2. Addition of NCAR ensemble 

 

Although the NCAR ensemble was initially brought in for comparison purposes, it is on the frontier of research and features 

some of the most sophisticated data assimilation methods used in any operational modeling to date (Schwartz et al., 2015). The 

NCAR ensemble also nearly doubles the original ensemble size, which enhances the quantification of uncertainty and should 

ultimately translate to more reliable forecasts. However, the value it contributes is not known as it has not been rigorously 

validated against the other ensembles.  In addition the operational status of the NCAR ensemble is uncertain, with some 

indication that it may be discontinued as early July 2016. 

 

We compared the impact of adding the NCAR ensemble in a hindcast setting using 2015 data. Initial results suggested that it 

added some skill in terms of the ETS (see Table 8), ROC and RD metrics (not shown). Thus, the decision made here was to 

include the NCAR ensemble for the 2016 operational season; however, contingency plans are in place in case this source goes 

offline.  
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3. Addition of observed or forecasted atmospheric variables 

 

The value of adding various observed and forecasted predictor variables (aside from QPF) to the POP1 predictive equation was 

also assessed (Table 9). All forecasted data were derived from the 06Z simulation of NCEP Global Forecast System (GFS) at 0.5 

degree resolution. This data is available by 5AM MDT, ensuring its availability for the Tool’s morning update. Each variable 

was chosen based on physically-based rationale that it may affect heavy rainfall. For example, higher IPW values should 

promote higher potential rainfall rates (interestingly, forecasted IPW was used by Scheuerer, 2014). Meanwhile, higher wind 

speeds could promote lower rainfall rates, especially if they are representative of storm steering winds: the faster a given storm 

moves, the less rainfall in any given location. It was also important to consider wind speed anomalies, as opposed to actual raw 

values. The reason for this is that because of the coincidence that winds weaken from May to July (for example, at 500mb 

[roughly 13,000 feet A.G.L.] average values decrease from 32 to 22 mph), while heavy rain frequencies increase (see Table 6), 

this leads to the right conclusion that stronger wind speeds favor lower rainfall but for the wrong reason. However, using 

anomalies circumvents this issue by removing the seasonal cycle. 

 

Table 9: Additional (non-QPF) POP1 predictors Significance 

Predictor By itself W/ QPF 

8AM observed IPW at Boulder Yes No 

8AM observed IPW anomaly at Boulder Yes No 

8AM observed 500mb wind speed anomaly at Denver Yes No 

3PM forecasted IPW Yes No 

3PM forecasted Convective Available Potential Energy Yes No 

3PM forecasted 300mb wind speed anomaly Yes No 

3PM forecasted 500mb wind speed anomaly Yes Yes 

3PM forecasted 700mb wind speed anomaly Yes No 

3PM forecasted 700mb wind direction No No 

 

In order to gain a better understanding concerning the value of the above potential predictor variables, POP1 logistic 

regressions were developed using only the variable, as well as including the variable after inclusion of the two QPF-based 

predictors described in point (1). Ultimately, we seek only variables that can add skill independent of that already provided by 

the QPF-max statistics. We use the 90% confidence level as the threshold for statistical significance. Interestingly, Table 9 

shows that of the nine considered predictors, all but one showed statistically significant skill by themselves. However, once 

QPF-max information is brought in, only one significant predictor remains: the mid-afternoon 500mb wind speed anomaly 

forecast. Across the District, 500mb equates to about 13,000 above ground level (away from the foothills), which is a good 

first-guess proxy of the storm steering speed. This variable is incorporated into the final Forecast Zone-specific POP1 equation 

(2). 

i) Equation for Forecast Zone-specific probability of exceeding 1 inch per hour 

The final equation for determining post-processed zone-specific POP1 is shown below. 

 

(2)     𝑌 = [1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+𝛽3𝑋3)]
−1

 

 

The table below shows that three predictor variable were retained in the analysis: ensemble mean QPF-max (after quantile 

mapping) for a given zone, the maximum quantile-mapped QPF-max for the entire District, and the forecasted 3PM GFS 

500mb wind speed anomaly for a grid point roughly over the Denver metro. Each predictor variable had significance exceeding 

95%. Surprisingly, the zone specific ensemble mean QPFmax (X1) carried roughly the same weight as the maximum QPF-max 
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over the entire District. This reiterates how, despite not being able to exactly place a heavy rainfall storm, knowledge of 

neighborhood activity increases the confidence in a specific zone. 

 

Predictor Description Coef. Value Std. Error Confidence 

--- Intercept β0 -5.560 0.480 99% 

X1 Ensemble mean, bias-corrected QPF-max 

across zone (inches) 

β1 1.260 0.540 95% 

X2 Forecasted 3PM GFS 500mb wind speed 

anomaly over District (m/s) 

β2 -0.096 0.033 98% 

X3 Maximum bias-corrected QPF-max over 

entire District (inches) 

β3 1.530 0.290 99% 

 

Although the predictor variables shown above are statistically significant, it is essential to validate the equation’s utility with a 

variety of metrics. Figure 7 shows the Relative Operating Characteristics (ROC) curve and the Reliability Diagram (RD) 

comparing the performance of equation (2) with the raw QPF data that was used during 2015. In both situations, the post-

processing has substantially improved performance. For example, the ROC curve shows that the black line is consistently 

higher than the red line, which translates into more hits and fewer false alarms compared to raw QPF data. Note that a perfect 

relationship would be represented by no movement of the line in the x-direction. Meanwhile, the RD curve shows that the raw 

data significantly over-predicted events, as discussed in the 2015 Final Report. The post-processing yields a more reliable 

prediction system. Note that these results are replicated, and are even more drastic, using the slightly looser 0.9 inch and 0.8 

inch thresholds, as shown in Appendix B; the reason for including lower thresholds was to increase the sample size of heavy 

rain “events”. 

 

Figure 7: ROC and RD plots for the zone-specific POP1 equation (black), compared to using raw model QPF (red). 

 

Table 10 shows the summary of additional and more condensed metrics. The Brier Skill Score (BSS) is a probabilistic measure 

of how much skill is contained in the prediction system. Values range from 0 to 1, with higher values being more skillful. 

However, any value above 0 indicates skill beyond using climatology. The post-processed data shows a higher BSS, which is an 

encouraging sign that it is performing better than raw data. Appendix B shows that BSS values increase as the threshold is 
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lowered from 1.0 inch per hour to 0.9 and 0.8, indicating there is more skill in identifying zone-specific heavy rainfall threats 

for weaker events. Appendix B also shows that the conclusions seen in Table 10 apply to the slightly lower thresholds as well. 

 

Table 10: Zone-specific Brier Skill Score (BSS) and Equitable Threat Scores for increasing probabilities comparing the raw 

and post-processed performance. Green boxes are used to more easily visualize the higher-skill product. 

  Equitable Threat Score with probability of exceeding 1.00in/hr: 

Zone Specific BSS 5% 10% 20% 30% 40% 50% 

Raw 0.08 0.13 0.15 0.18 0.14 0.13 0.07 

Post-processed 0.13 0.11 0.14 0.21 0.17 0.14 0.09 

 

Meanwhile, the Equitable Threat Score (ETS) measures system performance using a contingency table (i.e. “yes/no” and not 

probabilistic) type approach by valuing “hits” and subtracting for “false alarms” and “misses”. This metric ranges from 0 to 1, 

with 1 being perfect and anything above 0 indicating skill beyond climatology. Interestingly, results are mixed with the raw 

data performing better for lower probability events, while the post-processing improves the higher probability events. The ETS 

results should be interpreted with caution as they are sensitive (more so than the BSS) to the number of samples. 

ii) Equation for District-wide (all zones) probability of exceeding 1 inch per hour. 

As originally designed, the Tool only provided zone-specific probabilities (and threat levels) making it somewhat difficult to 

determine the overall threat across the District. A limitation of this approach is illustrated with an example. Envision a 

scenario where only 1 Forecast Zone had elevated chances of heavy rainfall (let’s say with a greater than 20% probability), but 

all 5 of the remaining zones were right on the edge. In such a case, the Tool would show a Low threat for the single Forecast 

Zone, but no threats elsewhere. In reality, due to the imperfect nature of storm placement, the chances of seeing something 

somewhere across the District, regardless of where, are likely much higher than what is being conveyed. To alleviate this 

limitation, here we introduce a post-processing method for determining POP1 for the entire District, which will be added to 

the Tool’s web output for the 2016 season. Equation 3 shows the final District-wide predictive equation, and the table below 

quantifies the coefficient value and confidence. 

 

(3)     𝑌 = [1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2)]
−1

 

 

Predictor Description Coef. Value Std. Error Confidence 

--- Intercept β0 -4.290 0.667 99% 

X1 Ensemble mean of QPFmax over entire 

District 

β1 2.346 1.201 90% 

X2 Maximum QPFmax over entire District Β2 1.192 0.657 90% 

 

Unlike for the zone-specific equation, the wind speed predictor is not statistically significant at the 90% confidence level and is 

not included, while both QPF-max predictors are still present. [There is currently no explanation for why this is the case, but 

one hypothesis is that District-wide equation contains only 153 data points compared to the 918 contained in the zone-specific 

equation. Thus, there may not be enough data to statistically extract the wind signal even if one exists.] Coefficient confidence 

is slightly lower but still significant enough to include. Figure 8 shows the ROC and RD curves. The ROC results are not as 

clear as for the zone-specific plot (compare to Figure 7), however the RD continues to show more reliability after post-

processing. Similar results are seen for the lower thresholds, as outlined in Appendix B. 
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Figure 8: ROC and RD plots for the District-wide (all zones) POP1 equation (black), compared to using raw model QPF (red). 

 

Finally, Table 11 presents the BSS and ETS metrics. The BSS continues to be higher after post-processing, indicating the utility 

of the equation. However, ETS results are mixed with the raw data performing notably better for lower probabilities, while the 

post-processed data performs notably better for middle and high probabilities. Overall, however, the post-processed data is 

more consistent. Appendix B shows that similar conclusions are found for the lower thresholds as well. 

 

A full 2015 hindcast of zone-specific and District-wide post-processed equation output can be found in Appendix C. 

 

Table 11: District-wide (all zones) Brier Skill Score (BSS) and Equitable Threat Scores for increasing probabilities comparing 

the raw and post-processed performance. 

 

  Equitable Threat Score with probability of exceeding 1.00in/hr: 

All Zones BSS 5% 10% 20% 40% 60% 80% 

Raw 0.32 0.26 0.39 0.42 0.24 0.20 0.09 

Post-processed 0.35 0.15 0.23 0.32 0.31 0.31 0.15 
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CONCLUSIONS 

 Statistical post processing of raw model QPF results in substantially more reliable estimates of the probability of exceeding 

1.00 inch per hour rainfall. This is measured by the RD and ROC curves (see Figure 7, 8). 

 The final post-processing methodology is based on a multi-step procedure starting with a correction of model climatology 

using quantile mapping, followed by replacing raw model probabilities with those based on a logistic regression. 

 The zone-specific logistic regression uses bias corrected model statistics including the ensemble mean zone-specific QPF-

max, the ensemble District-wide QPF-max and the forecasted afternoon wind speed anomaly over the District. 

 A District-wide processing step has been introduced to unify the zone-specific results. This will address instances where 

threat probabilities are close to but just below threshold level across many zones, even though the probability of the threat 

District-wide is relatively high. Appendix C can be used to compare the difference between the zone-specific and District-

wide probabilities.  

 Because each model has a different climatology (Figure 4), bias correction substantially increases the consistency of Tool 

output during times when not all model data is available. 

 

FUTURE RESEARCH & APPLICATION 

 Seasonality was not considered during post-processing due to an already limited data size and the “front-heavy” 2015 

warm-season that was highly unusual from a climatological perspective. It is likely that including a seasonal-dependence 

to the corrective steps will further enhance the post-processed guidance compared to using the raw model data. It is 

suggested that this be attempted at the conclusion of the 2016 season when two full years of data are available. 

 Table 9 showed that other atmospheric variables may provide useful corrective skill to QPF. However, due to the lack of 

readily available archived forecast data, these predictors used here were deterministic, and limited to one grid point and 

one time-step. It is suggested that using higher-resolution and more comprehensive (e.g. ensemble mean) forecast data 

could provide substantial additional forecast skill, especially at the zone-specific level. Specifically, experience suggests 

that forecasted wind direction could provide useful skill in correcting both QPF amount, and possibly location. 

 

ACTION ITEMS FOR 2016 OPERATIONS 

 Implement zone-specific quantile mapping of hourly QPF-max based on model “family”-dependent mapping tables. 

 Use quantile mapping tables to scale spatial QPF-max data for visualizing the “Max 1-hour QPF” that is currently 

shown on the Tool’s web output. 

 Incorporate NCAR ensemble, with contingency plans in case the product is no longer operational. 

 Given good model performance in capturing the effect of the Continental Divide on weather patterns during 2015, 

boundaries for Forecast Zones A and B will be truncated at the Continental Divide; this will reduce false alarms for 

the District. 

 Introduce a District-wide probability of exceedance (and threat level). 

 Use equations (2) and (3) to determine probabilities of exceedance and threat levels instead of using raw model QPF 

as was done during 2015. 
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APPENDIX A – COMPUTATIONAL INFORMATION 
The analysis and visualization presented in this research was conducted using open-source computing software. The NCAR 

Command Language (NCL) was used for re-gridding NOAA Stage IV precipitation data onto a common 0.04O grid. NetCDF 

operator (NCO) functions were used for post-processing hourly model data (concatenating, finding maximum/minimum, etc.). 

The statistical software R (version 3.2.2 “Fire Safety”) was used for the majority of the analysis. In particular, the following R 

packages were found very useful: SpecsVerification, ROCR, SpatialVx, zoo, lmomco, ncdf and verification. 

 

 

 

  

http://ncl.ucar.edu/
http://nco.sourceforge.net/
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APPENDIX B – VERIFICATION FOR OTHER THRESHOLDS 
The charts and tables below show Relative Operating Characteristics curves, Reliability Diagrams as well as Brier Skill Score 

and Equitable Threat Score metrics for the 0.9 inch per hour and 0.8 inch per hour thresholds. These lower thresholds were 

used to increase “event” sample size and ensure consistency of the 1 inch per hour results described in the main text. Below, 

data is grouped into Zone-specific and District-wide (all zones) categories, as in the main text. 

 

A. Greater than 0.9 inches per hour 

i) Zone Specific 

 

  Equitable Threat Score with probability of exceeding 0.90in/hr: 

Zone Specific BSS 5% 10% 20% 30% 40% 50% 

Raw 0.09 0.12 0.14 0.15 0.16 0.18 0.15 

Post-processed 0.14 0.10 0.14 0.22 0.19 0.14 0.08 
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ii) District-Wide (all zones) 

 

  Equitable Threat Score with probability of exceeding 0.90in/hr: 

All Zones BSS 5% 10% 20% 40% 60% 80% 

Raw 0.31 0.22 0.34 0.38 0.25 0.22 0.23 

Post-processed 0.35 0.14 0.23 0.32 0.28 0.32 0.16 
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B. Greater than 0.8 inches per hour 

iii) Zone Specific 

 

 

 

  Equitable Threat Score with probability of exceeding 0.80in/hr: 

Zone Specific BSS 5% 10% 20% 30% 40% 50% 

Raw 0.12 0.12 0.16 0.18 0.20 0.18 0.19 

Post-processed 0.17 0.10 0.15 0.20 0.22 0.21 0.14 
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iv) District-wide (all zones) 

 

 

  Equitable Threat Score with probability of exceeding 0.80in/hr: 

All Zones BSS 5% 10% 20% 40% 60% 80% 

Raw 0.29 0.20 0.29 0.34 0.31 0.25 0.19 

Post-processed 0.34 0.13 0.24 0.29 0.32 0.31 0.15 

  



  UDFCD  |  Heavy Rainfall Guidance Tool: 2016 Updates  |  24  

APPENDIX C – HINDCAST DISTRICT-WIDE AND ZONE-SPECIFIC 
EXCEEDANCE PROBABILITY FOR 2015 
The table below shows the hindcast probability (%) of hourly rainfall amounts exceeding 1 inch (POP1) over the 2015 

operational season using equation (2). Note that District-wide values are always less than or equal to the probability in each 

zone. Missing values are denoted by NA, and implies that one or more predictors was unavailable that day. This was apparently 

caused due to data lass during the GFS model data archiving process and is not expected to be an issue during real-time 

operations. 

 

 Forecast Zone - Specific  

Date A B C D E F District-wide 

5/1/2015 10% 14% 15% 15% 12% 13% 46% 

5/2/2015 2 2 2 2 2 2 5 

5/3/2015 16 16 18 22 18 20 39 

5/4/2015 30 36 49 30 27 33 77 

5/5/2015 3 4 4 4 5 4 18 

5/6/2015 7 6 8 10 8 8 33 

5/7/2015 13 13 17 19 17 19 53 

5/8/2015 5 5 6 7 6 6 30 

5/9/2015 23 24 24 30 30 26 83 

5/10/2015 1 1 0 1 0 0 2 

5/11/2015 0 0 0 0 0 0 2 

5/12/2015 2 2 2 2 2 2 8 

5/13/2015 3 3 3 3 3 3 7 

5/14/2015 1 2 1 1 1 1 5 

5/15/2015 2 2 2 2 2 2 9 

5/16/2015 12 12 15 13 12 13 32 

5/17/2015 1 1 1 1 1 1 5 

5/18/2015 6 6 7 7 6 6 18 

5/19/2015 1 1 1 2 1 1 7 

5/20/2015 2 2 2 2 1 2 8 

5/21/2015 4 4 3 3 3 3 12 

5/22/2015 4 4 4 6 5 6 27 

5/23/2015 9 7 8 11 11 8 44 

5/24/2015 16 15 18 21 17 18 48 

5/25/2015 3 4 4 3 3 4 14 

5/26/2015 3 3 4 4 3 3 13 

5/27/2015 3 3 3 3 3 3 11 

5/28/2015 8 8 9 11 10 9 21 

5/29/2015 8 7 7 7 7 7 28 

5/30/2015 3 3 3 3 3 3 9 

5/31/2015 3 3 3 3 3 3 12 

6/1/2015 3 3 4 4 3 3 12 

6/2/2015 1 1 1 1 1 1 2 

6/3/2015 27 25 27 40 34 34 61 

6/4/2015 22 21 28 26 25 25 58 

6/5/2015 20 19 22 38 31 32 94 

6/6/2015 6 6 6 8 6 6 27 

6/7/2015 16 17 18 18 16 18 62 

6/8/2015 10 11 9 8 8 8 15 

6/9/2015 4 3 4 3 3 3 14 

6/10/2015 12 11 12 14 14 12 52 

6/11/2015 60 67 69 73 64 69 97 

6/12/2015 6 8 8 6 5 6 23 
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6/13/2015 36 36 29 27 26 28 55 

6/14/2015 31 26 24 26 27 24 55 

6/15/2015 37 45 46 50 41 39 89 

6/16/2015 7 6 7 7 6 6 26 

6/17/2015 13 14 15 24 17 19 61 

6/18/2015 10 13 11 11 10 11 54 

6/19/2015 1 1 1 1 1 1 2 

6/20/2015 0 0 0 0 0 0 2 

6/21/2015 1 1 1 1 1 1 2 

6/22/2015 0 0 0 0 0 0 2 

6/23/2015 8 9 13 9 8 8 37 

6/24/2015 11 13 12 11 11 11 30 

6/25/2015 6 6 6 8 7 6 30 

6/26/2015 4 3 3 3 3 3 20 

6/27/2015 1 1 1 1 1 1 4 

6/28/2015 5 5 5 4 3 3 33 

6/29/2015 2 2 1 1 1 1 8 

6/30/2015 13 10 8 8 9 9 38 

7/1/2015 26 32 27 22 25 24 83 

7/2/2015 11 13 13 10 12 13 58 

7/3/2015 24 30 32 26 26 34 77 

7/4/2015 3 4 4 3 4 3 14 

7/5/2015 5 5 4 4 4 4 28 

7/6/2015 18 23 19 15 18 20 67 

7/7/2015 19 16 10 10 15 12 58 

7/8/2015 44 49 59 52 46 46 94 

7/9/2015 27 37 36 35 23 27 91 

7/10/2015 2 3 3 3 2 3 20 

7/11/2015 1 1 1 1 1 1 5 

7/12/2015 1 1 1 1 1 1 3 

7/13/2015 6 6 5 5 5 4 29 

7/14/2015 14 14 10 10 9 10 38 

7/15/2015 2 3 2 2 2 2 18 

7/16/2015 1 2 1 1 1 1 6 

7/17/2015 1 1 1 1 1 1 3 

7/18/2015 3 3 2 3 3 3 16 

7/19/2015 12 13 15 12 11 12 49 

7/20/2015 4 5 3 3 3 3 18 

7/21/2015 19 20 33 35 23 26 89 

7/22/2015 1 1 1 1 1 1 7 

7/23/2015 1 1 1 1 1 1 2 

7/24/2015 2 3 2 2 2 2 11 

7/25/2015 0 1 0 0 0 0 4 

7/26/2015 4 5 6 5 4 5 19 

7/27/2015 1 1 1 1 1 1 6 

7/28/2015 0 0 0 0 0 0 3 

7/29/2015 2 3 2 2 2 2 26 

7/30/2015 4 5 6 4 4 4 18 

7/31/2015 8 12 11 8 7 8 41 

8/1/2015 3 3 3 3 3 3 10 

8/2/2015 6 8 6 6 5 6 19 

8/3/2015 6 7 6 4 4 5 37 

8/4/2015 0 0 0 0 0 0 2 

8/5/2015 0 0 0 0 0 0 2 

8/6/2015 0 0 0 0 0 0 1 

8/7/2015 4 4 5 7 5 5 30 

8/8/2015 3 3 4 4 3 3 23 
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8/9/2015 2 3 3 3 3 2 12 

8/10/2015 24 39 46 28 21 32 89 

8/11/2015 35 52 60 33 30 39 93 

8/12/2015 8 9 7 6 7 6 43 

8/13/2015 11 13 8 7 7 7 43 

8/14/2015 26 37 22 15 14 18 72 

8/15/2015 5 6 5 5 4 4 16 

8/16/2015 26 30 30 41 28 29 79 

8/17/2015 16 23 31 19 15 21 78 

8/18/2015 1 1 1 1 1 1 9 

8/19/2015 0 0 0 0 0 0 2 

8/20/2015 1 1 1 1 1 1 2 

8/21/2015 1 1 2 1 1 1 5 

8/22/2015 1 1 1 1 1 1 3 

8/23/2015 1 1 1 1 1 1 2 

8/24/2015 1 1 1 1 1 1 2 

8/25/2015 1 1 1 1 1 1 5 

8/26/2015 3 3 3 2 2 3 11 

8/27/2015 2 2 2 2 2 2 18 

8/28/2015 1 1 1 1 1 1 5 

8/29/2015 2 2 2 2 2 2 5 

8/30/2015 2 2 2 2 2 2 10 

8/31/2015 7 9 9 8 7 8 38 

9/1/2015 3 3 3 2 2 2 15 

9/2/2015 1 1 1 1 1 1 4 

9/3/2015 4 4 3 3 3 3 20 

9/4/2015 1 1 1 1 1 1 6 

9/5/2015 NA NA NA NA NA NA 6 

9/6/2015 1 1 1 1 1 1 6 

9/7/2015 NA NA NA NA NA NA 6 

9/8/2015 0 0 0 0 0 0 2 

9/9/2015 0 0 0 0 0 0 1 

9/10/2015 5 4 5 6 6 6 17 

9/11/2015 3 3 4 4 4 4 10 

9/12/2015 0 0 0 0 0 0 1 

9/13/2015 1 1 1 1 1 1 1 

9/14/2015 1 1 1 1 1 1 4 

9/15/2015 1 1 1 1 1 1 4 

9/16/2015 1 1 1 1 1 1 4 

9/17/2015 0 0 0 0 0 0 3 

9/18/2015 0 0 0 0 0 0 2 

9/19/2015 0 0 0 0 0 0 2 

9/20/2015 0 0 0 0 0 0 1 

9/21/2015 0 0 0 0 0 0 1 

9/22/2015 3 3 3 3 3 3 8 

9/23/2015 8 7 6 6 6 6 19 

9/24/2015 2 2 2 2 2 2 3 

9/25/2015 1 1 1 1 1 1 1 

9/26/2015 1 1 1 1 1 1 1 

9/27/2015 1 1 1 1 1 1 2 

9/28/2015 8 9 10 9 10 10 35 

9/29/2015 14 19 22 18 16 16 55 

9/30/2015 1 1 1 1 1 1 4 

 


