
Development of Stage-Discharge Ratings for Site 4830 – South Boulder Creek at Sans Souci

May 19, 2006 (Rev May 2007)

Prepared for: Urban Drainage and Flood Control District 2480 W. 26th Avenue Suite 156-B Denver, CO 80211

Table of Contents

1.0 CERTIFICATION	3
2.0 INTRODUCTION	4
3.0 FIELD SURVEY METHODS	4
4.0 DATA REDUCTION, MODELING AND ANALYSIS	5
5.0 RATING DEVELOPMENT	5
5.1 Site 4830 Channel Survey	7
5.2 Site 4830 HEC-RAS Modeling	. 18
5.3 Site 4830 Depth above PT Discharge Rating	. 23
5.4 Site 4830 Discussion of Rating Results	. 25
6.0 REFERENCES	. 26
7.0 SURVEY FIELD NOTES	. 27
Table of Figures	
Figure 1. Site 4830 Location Map.	6
Figure 2. South Boulder Creek at Site 4830 Looking Upstream from the Gaged Cross Section.	
Figure 3. Site 4830 Cross Section and Landmark Locations	
Figure 4. Site 4830 Cross-Section 1.0 Looking Downstream.	
Figure 5. Site 4830 Cross-Section 2.0 Looking Downstream.	
Figure 6. Site 4830 Cross-Section 3.0 at the PT Looking Downstream	. 11
Figure 7. Site 4830 Cross-Section 4.0 Looking Downstream.	. 12
Figure 8. Site 4830 Cross-Section 5.0 Looking Downstream.	. 13
Figure 9. Views of the Side Channel on the Left Bank of Site 4830 Cross-Section 5.0 Looking	3
Upstream	
Figure 10. Site 4830 Location of the WET-Installed Survey Monument near the Standpipe at t	the
End Point of Cross-Section 3.0.	
Figure 11. Site 4830 Bench Mark Survey Notes	. 16
Figure 12. Site 4830 Reduced Cross Section Survey Notes	. 17
Figure 13. Site 4830 Graphical Description of Surveyed Cross Sections.	
Figure 14. Site 4830 HEC-RAS Water Surface Elevations at Maximum Flow at Cross Section	i
3.0	
Figure 15. Site 4830 HEC-RAS Model Output.	
Figure 16. Site 4830 Flow Measurement Calculation.	
Figure 17. Site 4830 Predicted Stage – Discharge Rating	
Figure 18. Site 4830 Stage-Discharge Rating Comparisons.	
Figure 19. Site 4830 Stage-Discharge Relationship Log-Log Plot.	. 24
Table of Tables	
Table 1. Site 4830 Stage-Discharge Rating	
Table 2. Current UDFCD Rating for Site 4830	

1.0 CERTIFICATION

I, Richard Spotts, state that the information presented in this report entitled, "Development of Stage-Discharge Ratings for Site 4830 – South Boulder Creek at Sans Souci," prepared for The Urban Drainage and Flood Control District, Denver, Colorado was prepared by me or by persons under my supervision and is correct to the best of my knowledge and information.

Richard Spotts, P.E. Registration No. 26155

2.0 INTRODUCTION

Water and Earth Technologies, Inc. (WET) was contracted by The Urban Drainage and Flood Control District (UDFCD) to develop a hydraulic rating at Site 4830, South Boulder Creek at Sans Souci. This station, located upstream of Route 93 is already instrumented to measure river stage.

Stage information for this site is telemetered in real time to local base stations that assess the flooding potential during large runoff events. In addition to stage, discharge information is valuable for decision-making. Stage-discharge rating relationships (ratings) are used to convert the stage, represented as a water depth in feet above a reference elevation monitored by a pressure transducer (PT) in the stream to values of discharge in cubic feet per second (cfs). The discharge rating developed in this report is based on precise measurement of the river channel and physical structures controlling flow and mathematical approximation of the hydraulics at this site.

This report includes the following sections:

- an introduction,
- a discussion of field survey methods,
- a discussion of office procedures for data reduction and analysis,
- a description of each site and a discussion and presentation of survey data and model results (including model output, a stage-discharge rating table and a plot of the rating curve, and recommendations relevant to the results),
- a compilation of references, and
- cross section field survey notes.

3.0 FIELD SURVEY METHODS

A theoretical step-backwater technique using the U.S. Army Corps of Engineers HEC-RAS computer model (USACOE 2002) was used to develop the stage-discharge ratings. The modeling typically requires data for five cross sections at a site. Typically, the cross section in which stage is observed is bracketed by one or more cross sections both upstream and downstream. Cross sections were surveyed from left to right looking downstream. Cross sections were numbered from downstream to upstream. Bench marks and end points of each cross section were marked as appropriate. A mapping grade GPS unit was used to determine the latitude and longitude of monument bench marks at each site, the stage measurement sensor housing (with the cap removed) and each cross-section end point so that cross sections and bench marks can be easily located in the future. Additionally, the coordinates were used to establish cross-section orientation in the HEC-RAS model. A self-leveling level, tape and survey rod were used to measure each point in the cross section and to relate streambed and water-surface cross section elevations to the bench mark elevation.

Variations in channel roughness (Manning's n value) were determined for each cross section. The main channel and overbank areas within each cross section were subdivided into n-value break points (locations where n-values change), and n-values specific to each subdivision were estimated. A current meter flow measurement was made and was referenced to the water-surface elevation in the gaged cross section. Section velocity measurements and discharge determinations were made using the midsection method. This information was used to determine the Manning's n-value associated with the measured stage, low-flow discharge, and gradient of

the water surface between cross sections. The information was used to check the calibration of the HEC-RAS model run associated with the measured discharge.

Photos of the site and each surveyed cross section were taken. Cross-section location selection, spacing, and orientation; surveying techniques; roughness parameter selection (Manning's n values); current meter/velocity measurement techniques; and photographic and methods documentation followed standard protocols (Arcement and Schneider 1990; Barnes 1987; Benson and Dalrymple 1984; Dalrymple and Benson 1984; Harrelson et. al. 1994; Schulz 1974; U.S Army COE 2002; U.S. Geological Survey 1977).

4.0 DATA REDUCTION, MODELING AND ANALYSIS

As previously mentioned, the U.S. Army COE HEC-RAS computer model was used to analyze the field data and develop the stage-discharge rating relationships. HEC-RAS is an integrated system of software, designed for interactive use in a multi-tasking environment. The steady flow water-surface profile component of the modeling system was used to calculate water surface profiles and elevations for a wide range in flows, from very low flow to flood flows, or flow that would occur at the highest stage contained within the channel and surveyed overbank. The basic computational procedure is based on the solution of a one-dimensional energy equation describing gradually varied uniform flow through the channel. Energy losses are evaluated by friction (Manning's equation) and contraction/expansion (coefficient multiplied by the change in velocity head).

WET's HEC-RAS modeling input applied the initial assumption that the downstream modeling boundary condition was controlled by normal depth as defined by measured channel conditions and slope. At higher flows however, other cross sections may control the flow. These controlling locations and conditions are additional valuable output from the HEC-RAS model. Output values from the HEC-RAS model include the predicted water surface elevations at each cross section for a range of known discharges. The water surface predictions at the pressure transducer cross section were used to develop the stage-discharge rating for the site.

Where possible, the current rating defined by UDFCD was compared to the HEC-RAS modeling results based on the WET channel survey.

5.0 RATING DEVELOPMENT

A general site investigation was performed by WET staff on January 10, 2006. The site was surveyed by WET staff on January 26, 2006. River cross sections were surveyed to describe the channel and used as input data to the HEC-RAS hydraulic model in order to develop a stage—discharge relationship at the PT cross section.

Site 4830, South Boulder Creek at Sans Souci is located on City of Boulder Open Space property just northwest of the intersections of Route 93 and Route 170, South of Boulder, CO (circled in red in Figure 1).

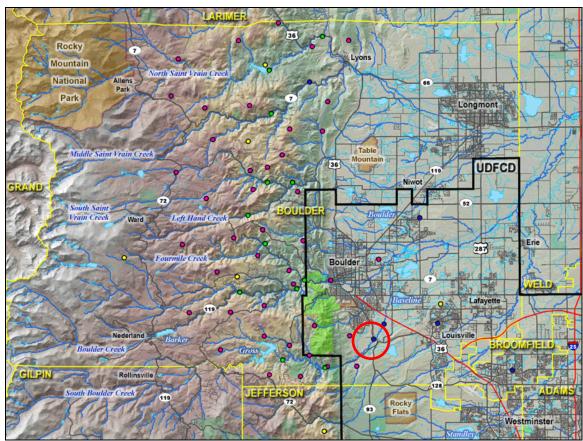


Figure 1. Site 4830 Location Map.

Figure 2. South Boulder Creek at Site 4830 Looking Upstream from the Gaged Cross Section.

5.1 Site 4830 Channel Survey

On January 26, 2006 WET surveyed five channel cross sections to define the geometry of the river channel and overbank areas at this site. An aerial photo with approximate locations of cross sections and landmarks is presented in Figure 3. Photos of each cross section are presented in Figure 4 - Figure 8. Additional photos of the overbank topography upstream of the PT are presented in Figure 9. A monument was placed near the standpipe as an additional vertical control point for the survey. This monument is shown in Figure 10.

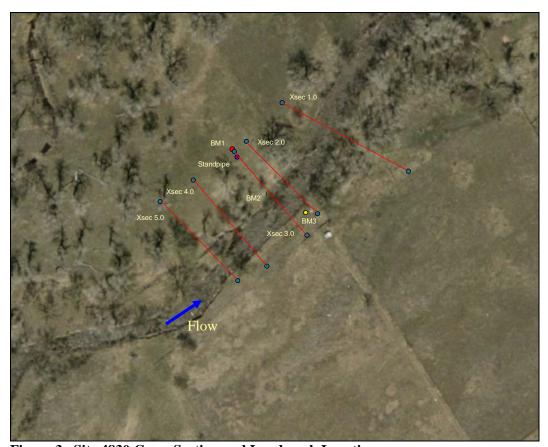


Figure 3. Site 4830 Cross Section and Landmark Locations.

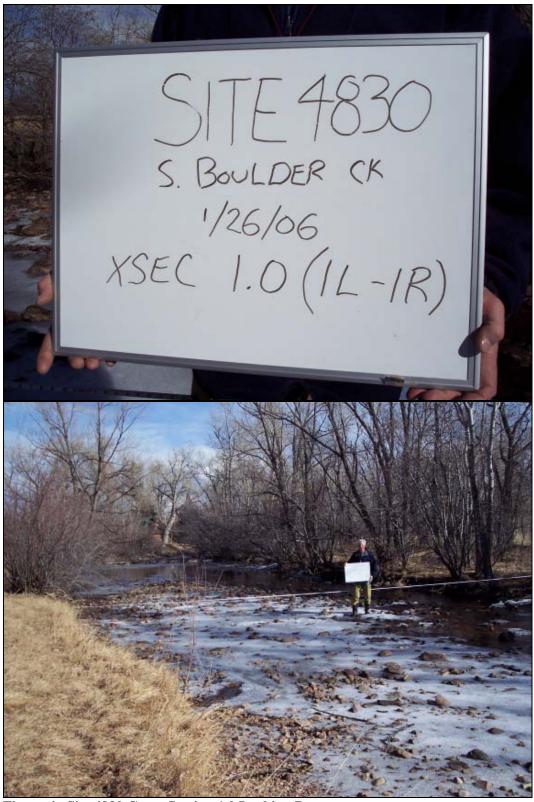


Figure 4. Site 4830 Cross-Section 1.0 Looking Downstream.

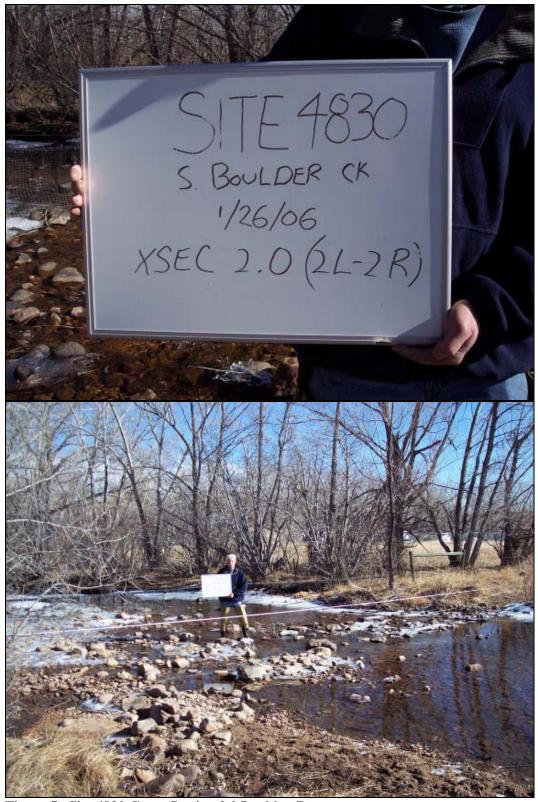


Figure 5. Site 4830 Cross-Section 2.0 Looking Downstream.

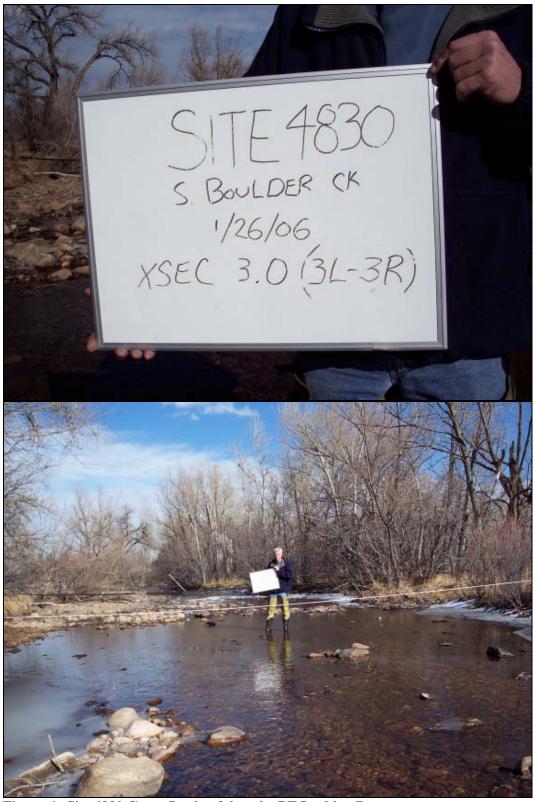


Figure 6. Site 4830 Cross-Section 3.0 at the PT Looking Downstream.

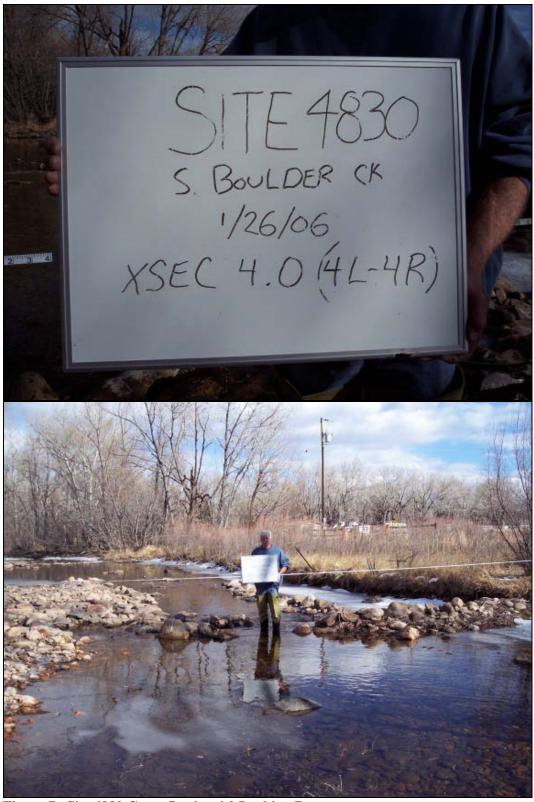


Figure 7. Site 4830 Cross-Section 4.0 Looking Downstream.

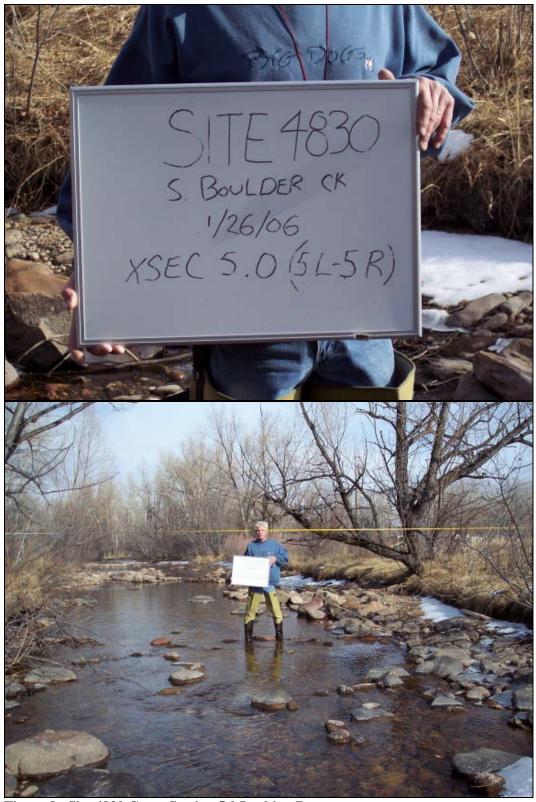


Figure 8. Site 4830 Cross-Section 5.0 Looking Downstream.

Figure 9. Views of the Side Channel on the Left Bank of Site 4830 Cross-Section 5.0 **Looking Upstream.**

Figure 10. Site 4830 Location of the WET-Installed Survey Monument near the Standpipe at the End Point of Cross-Section 3.0.

The reduced survey field notes for the five channel cross sections are presented in Figure 11 and Figure 12.

	Benchmarks			
	HI (ft amsl)	Rod (ft)	Elevation (ft amsl)	Comments
HI1	5472.13	5.10	5467.03	BM1 - WET installed cap near standpipe, elevation GPS (corrected)
		6.28	5465.85	BM2 - top of PT pipe with cap removed
		6.21	5465.92	BM3 - top of concrete vault bottom (not on lid) on River right

Figure 11. Site 4830 Bench Mark Survey Notes.

Heart Station Roof Selection Roof Ro			Cross Sec	tion 1 0			_	Cross Secti	lon 2 fi	
H1										
15.0 7.36 566.77 15.0 7.76 566.77 15.0 7.76 566.79 15.0 7.76 566.79 15.0 7.76 566.79 15.0 7.76 566.79 15.0 1.76 56					Comments	HI (ft amsi) Stat				
15.4 77.4 546.39 11.5 6.74 546.59 546.51 12.0 546.51 12.0 546.51 12.0	HI1	0.0	6.10		Pin 1L	HI1	0.0		5466.91	Pin 2L
22.0 7.88 546.455										
27.8 7.66 5464.47										
32.0										
## 1										
## 1					TOB					TOR
Section					106					
S3.5 9.65 5462.38 74.8 77.8 5464.39 69.0 93.0 5462.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.32 76.5 5461.33					LEW					LEVY
10					LLVV					
69.0 9.90 5462.23										
72.0 9.46 5462.67 64.0 6.05 5464.60 7.77 54.0 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.33 64.0 6.05 5462.43 64.0 6.05 5462.43 64.0 6.05 5462.43 64.0 6.05 5462.43 64.0 6.05 5462.43 64.0 6.05 5462.43 64.0 6.05 5462.43 64.0 64										
74.5 10.20 5461.93 5462.33										
Proceedings										
84.0 9.70 5462.43 97.0 6.25 5465.86 5462.40 700 9.8.5 5465.86 5462.40 700 102.2 8.69 5465.40 5462.40 700										
84.0 9.70 5462.43 97.0 6.25 5465.86 5462.40 700 9.8.5 5465.86 5462.40 700 102.2 8.69 5465.40 5462.40 700		81.5					94.0			
89.5 10.05 5462.08 REW 99.8 8.53 5463.60 10.10 8464.03 TOB 10.52 8.64 8464.01 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 11.10 11.10 11.10 7.10 5465.03 Pin IR 11.10 6.23 5465.03 Pin IR 11.10 6.23 5465.03 Pin IR 11.10 6.24 6.24 Pin IR 11.10 6.25 5465.03 Pin IR 11.1		84.0	9.70	5462.43			97.0			
101.0 3.10 5464.03 105.2 6.24 5463.9		89.5	10.05	5462.08	REW		99.8		5463.60	
104.5 3.12 \$464.01 108.4 8.05 \$464.05 REW 120.0 7.10 \$465.03 115.0 6.65 \$464.51 120.0 7.10 \$465.03 115.0 6.65 \$465.40 TOB 117.0 7.02 \$465.03 115.0 6.65 \$465.40 TOB 117.0 7.02 \$465.03 115.0 6.65 \$465.05 TOB 117.0 7.02 \$465.03 115.0 6.65 \$465.05 TOB 117.0 7.02 \$465.03 TOB 120.0 7.64 \$466.03 TOB \$464.03 TOB \$464.03 TOB \$466.03 TOB \$467.03 TOB \$467		92.0	8.65	5463.48	TOB		102.2	8.69	5463.44	
119.0 7.32 5464.81 112.0 7.62 5464.53 143.0 7.10 5465.03 165.0 6.10 5465.03 165.0 6.10 5465.03 165.0 6.10 5465.03 165.0 6.10 5465.03 165.0 6.10 5465.72 165.0 6.10 5465.72 165.0 6.10 5465.72 165.0 6.10 5465.72 165.0 6.10 5465.72 165.0 6.10 5465.72 165.0 6.10 5465.72 165.0 6.10 5465.72 165.0 6.10 6.		101.0	8.10	5464.03			105.2	8.24	5463.89	
128.0 7.10 5465.03 115.0 6.55 5465.46 TOB 155.0 8.10 5464.03 100.0 6.41 5465.72 100.0 6.41 5465.72 100.0 6.41 5465.72 100.0 6.41 5465.72 100.0 6.41 5465.72 100.0 6.41 5465.72 100.0 6.41 5465.72 100.0 6.41 5465.72 100.0 6.41 5465.73 100.0 6.41 5465.73 100.0 6.41 5465.73 100.0 6.41 5465.73 100.0 6.41 5465.73 100.0 6.41 5465.73 100.0 6.41 5465.73 100.0 6.41 6467.73 100.0 6.41 6467.73 100.0 6.41 6467.73 100.0 6.41 6467.73 100.0 6.41 6467.73 100.0 6.41 6467.73 100.0 6.41 6467.73 100.0 6465.74 100.0			8.12					8.05	5464.08	REW
143.0 7.10 5466.03 17.95 5464.63 17.95 7.50 5464.63 17.95 7.50 5464.63 17.95 7.50 5464.63 17.95 7.50 5464.63 17.95 7.50 5464.63 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95 7.95 5465.03 17.95										
155.0 8.10 5464_61_3 130.0 6.41 5465.72 1880 7.64 5464_49 140.8 5.59 5466_74 Pr.2 Pr.2 140.8 5.59 5466_74 Pr.2										TOB
179.5										
18.0 7.64 S464.49 Pin 1R										
Cross Section 4.0										
Cross Section 3.0 Cross Section 4.0 Delow confluence of side channel							146.8	5.39	5466.74	PIN 2R
Hi (flames) Station (ft) Revision (ft) Elevation (ft) amis) Comments Hi (flames) Station (ft) Revision (ft)		207.5	6.50	5465.63	Pin 1R					
Hi (flames) Station (ft) Revision (ft) Elevation (ft) amis) Comments Hi (flames) Station (ft) Revision (ft)									45	
High armsis Station (R) Root (R) Elevation (R amis) Comments High armsis Station (R) Root (R) Elevation (R amis) Comments High armsis Comments High armsis Comments High armsis Station (R) Root (R) Elevation (R amis) High armsis Comments High armsis Com				tion 3.0						val.
H11 0 0 5.10 5.67 03 Pin 3L H11 0 0 4.10 5486.03 Pin 4L 1.10 5.04 5467.03 Pin 3L 1.15 5.38 5466.73 Standpipe 1 2.10 4.70 5436.03 Pin 4L 1.15 5.38 5466.75 H2 29.5 6.07 5466.06 Pin 4.15 5.38 5466.75 Pin 4.20 4.88 5467.25 Pin 4.20 4.20 4.88 5467.25 Pin 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.20	HI /ft ame!!			Flevation (fi agent)	Comments	HI (ff amel) Pist				
1.0 5.04 5467.09 Standpipe										
11.5 5.36 5465.75 42.0 4.88 5467.25 TOB	- 111									
17.0					Startupipe					
29.5 6.07 5466.06 68.3 7.47 5464.66 68.3 7.65 5464.48 68.3 7.65 5464.48 68.3 7.65 5464.47 68.5 68.3 7.65 5464.47 68.6 68.6 68.6 5465.48 1012 7.96 5464.47 68.6 68.6 7.71 5464.42 109 of control of the										TOB
33.7 6.38 5465.75 88.3 7.65 5464.87 55.0 6.76 5464.87 565.0 6.76 5465.85 101.2 7.96 5464.77 6.36 6.65 5465.85 101.2 7.96 5464.37 6.8.6 6.65 5465.87 101.7 8.36 5463.87 101.2 7.96 5464.22 top of control 6.8.6 6.8 6.8 6.8 6.8 6.8 6.8 105.5 7.71 5464.42 top of control 77.0 7.79 5464.34 109.7 8.63 5463.87 109.7 7.9 5464.34 109.7 8.63 5463.83 center channel 82.0 8.31 5463.82 minoide of intrake pipe 112.5 7.76 5464.34 109.7 8.63 5463.83 center channel 82.0 8.31 5463.82 minoide of intrake pipe 112.5 7.76 5464.34 109.7 8.63 5463.83 109 of control 87.8 8.60 5463.83 116.7 8.8 8.60 5465.83 11.										
## 17.0										coge of chamiles
\$8.0 6.76 \$463.55										
64.8										
67.8 6.565 5.665.48 TOB 106.55 7.71 546.4.22 top of control 69.0 7.76 5464.37 left edge of channel 109.5 7.91 5464.32 top of control 74.0 7.79 5464.33 left edge of channel 109.5 7.91 5464.32 top of control 74.0 7.79 5464.34 left edge of channel 109.5 7.91 5464.32 top of control 74.0 7.79 5464.37 left edge of channel 82.0 8.31 5463.98 LEW 111.0 8.75 5463.38 center channel 82.0 8.35 5463.78 left edge of intake pipe 112.5 7.76 5464.37 top of control 74.0 11.0 8.75 5463.38 left edge of intake pipe 112.5 7.76 5464.37 top of control 74.0 11.0 8.75 5463.38 left edge of intake pipe 112.5 7.76 5464.37 top of control 74.0 11.0 8.75 5463.38 left edge of intake pipe 112.5 7.76 5464.37 top of control 74.0 11.0 11.0 8.75 5463.38 left edge of intake pipe 112.5 7.76 5464.37 top of control 74.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 1										
69.0					TOB					top of control
74.0 7.79 \$464.34 78.7 8.15 \$463.89 LEW middle of intake pipe midd										
78.7 8.15 \$463.98 LEW 111.0 8.75 \$463.38 center channel 82.0 8.31 \$463.82 middle of intake pipe 112.5 7.76 \$463.38 center channel 112.5 7.76 \$463.38 center channel 112.5 7.76 \$463.38 top of control 84.8 8.35 \$463.78 end of intake pipe 112.5 7.76 \$463.38 top of control 84.8 8.35 \$463.78 end of intake pipe 112.5 7.76 \$463.38 top of control 84.8 8.3 8.35 \$463.81 end of intake pipe 112.5 7.76 \$463.38 top of control 96.0 8.47 \$463.66 top 12.2 0 7.35 \$463.38 top of control 11.8 8.37 \$463.76 top 12.2 0 7.35 \$464.77 end of intake pipe 112.0 7.35 \$465.17 end of intake pipe 112.0 7.35 \$466.17 end of intak					suge of whiteful					
82.0 8.31 5463.82 middle of intake pipe 43.8 8.35 5463.78 to por control 48.8 8.35 5463.78 end of intake pipe 41.42 8.20 5463.93 top of control 93.6 8.52 5463.61 12.20 7.36 5464.77 98.0 96.0 8.47 5463.66 122.8 7.36 5464.77 98.0 101.8 8.37 5463.76 122.0 7.36 5464.77 101.8 8.37 5463.76 122.0 7.36 5464.77 101.8 8.37 5463.76 122.0 5.59 5465.61 122.0 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61 122.0 5.59 5465.61					LEW					
84.8 8.35 5463.78 end of Intake pipe 114.2 8.20 5463.93 top of control 87.8 8.60 5463.63 116.7 6.64 5465.29 93.6 8.52 5463.61 122.0 7.36 5465.10 edge of channel 101.8 8.37 5463.76 129.0 5.95 5456.17 TOB 101.8 8.37 5463.45 122.0 7.36 5465.10 edge of channel 110.7 8.60 5463.45 122.0 5.72 5456.41 TOB 118.0 6.54 5465.59 TOB 122.0 5.72 5456.41 TOB 122.0 5.72 5456.58 TOB 122.0 5465.58 TOB 122.0 5465.58 TOB 122.0 5465.58 TOB 122.0 5465.63 TOB										
97.8 8.60 5463.53 116.7 6.84 5465.29 93.6 8.52 5463.61 122.0 7.36 5464.77 95.0 8.47 5463.66 127.8 7.03 5465.77 101.8 8.37 5463.76 129.0 5.96 5465.10 edge of channel 101.8 8.37 5463.76 129.0 5.96 5465.10 TOB 101.8 8.37 5465.10 101.8 8.37 5465.10 101.8 8.38 5465.35 132.0 5.72 5466.41 101.7 8.60 5465.59 TOB 148.0 4.14 5467.99 126.5 6.76 5465.37 136.0 5.84 5465.59 TOB 148.0 4.14 5467.99 136.0 5.84 5466.83 136.2 6.39 5465.60 127.7 5466.83 136.2 6.39 5466.83 136.2 6.39 5468.83 136.2 6.39 5468.83 136.2 6.39 5468.83 136.2 6.39 5468.83 136.2 6.39 5468.83 136.2 6.39 5468.83 136.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3										
93.6 8.52 \$463.61 122.0 7.36 \$454.77 edge of channel 127.8 7.03 \$455.10 edge of channel 101.8 8.37 \$463.66 122.8 7.03 \$455.10 edge of channel 101.8 8.37 \$463.45 122.8 7.03 \$456.11 TOB 101.8 8.37 \$463.45 122.8 7.03 \$456.11 TOB 101.8 8.37 \$463.45 122.8 \$466.11 \$12.8 \$466.11 \$10.6 6 8.68 \$463.45 122.8 \$466.55 \$132.0 \$7.2 \$456.41 \$110.7 \$8.60 \$463.53 \$464.10 \$115.4 \$8.03 \$464.10 \$8EW\$ \$142.0 \$5.8 \$466.55 \$466.55 \$12.0 \$466.55 \$132.0 \$466.55 \$466.55 \$132.0 \$466.55 \$466.55 \$132.0 \$466.55 \$466.55 \$132.0 \$466.55 \$466.55 \$132.0 \$466.55 \$466.55 \$132.0 \$466.55 \$466.55 \$151.3 \$4.14 \$457.99 \$147.7 \$5.32 \$466.81 \$Pln 3R\$										
98.0 8.47 \$463.66 127.8 7.03 \$465.10 edge of channel 1018 8.37 \$463.66 127.8 7.03 \$465.10 TOB 1018.8 8.37 \$463.56 122.0 5.72 \$466.11 10.7 8.60 \$463.53 132.0 5.72 \$466.11 110.7 8.60 \$463.53 136.0 5.84 \$465.59 TOB 146.0 4.14 \$467.99 126.5 6.76 \$465.37 1310.0 5.84 \$466.59 TOB 146.0 4.14 \$467.99 126.5 6.76 \$466.10 127.7 5.32 \$466.81 Pln 3R										
101.8		96.0								edge of channel
106.6 8.68 5463.45 132.0 5.72 5466.41 110.7 8.60 5463.53 136.2 6.03 5466.15 118.0 6.54 5465.59 TOB 142.0 5.58 5466.55 5466.55 118.0 6.54 5465.59 TOB 148.0 4.14 5467.99 126.5 6.76 5466.29 156.6 3.93 5468.20 Pin 4R 147.7 5.32 5466.81 Pin 3R										
110.7										_
115.4 8.03 546.10 REW 142.0 5.58 5466.55 118.0 6.54 5465.59 TOB 148.0 4.14 5467.99 126.5 6.76 5465.59 TOB 148.0 4.14 5467.99 126.5 6.76 5465.59 Pin 3R 151.3 4.14 5467.99 166.6 3.93 5466.20 Pin 4R 147.7 5.32 5466.61 Pin 3R 156.6 3.93 5468.20 Pin 4R 147.7 5.32 5466.61 Pin 3R 156.6 3.93 5468.20 Pin 4R 147.7 3.30 5468.83 77.0 3.30 5468.83 77.0 3.30 5468.83 77.0 3.50 5468.83 77.0 3.50 5468.83 77.0 3.50 5468.83 77.0 3.50 5468.83 78.0 5.80 5468.38 10 side channel 0.01 6.25 5465.88 10 side channel 0.02 5.80 5468.38 0.01 6.96 5465.78 10 side channel 0.02 5.80 5468.83 78.0 5.80 5468.95 10 side channel 0.02 5.80 5468.83 78.0 5.80 5468.95 10 side channel 0.02 5.80 5468.83 78.0 5.80 5468.95 10 side channel 0.02 5.80 5468.83 78.0 5469.95 10 side channel 0.02 5469.05 10 side										
118.0 6.54 5465.59 TOB 148.0 4.14 5467.99 126.5 6.76 5465.37 151.3 4.14 5467.99 126.5 5.84 5466.29 Pin 3R					REW					
126.5 6.76 5465.37 151.3 4.14 5467.99 136.0 5.84 5466.29 Pin 3R Cross Section 5.0 Upstream Fin 3R Upstream Fin 3R Upstream Fin 3R Fin 5R										
136.0 5.84 5466.29 156.6 3.93 5468.20 Pin 4R 147.7 5.32 5466.81 Pin 3R 147.7 5.32 5466.81 Pin 3R 147.7 15.32 5466.81 Pin 3R 147.8 15.65 1.85 Pin 3R 147.8 Pin 3				5465.37						
Topic Topi										Pin 4R
Hi (ft amsi) Station (ft) Rod (ft) Elevation (ft amsi) Comments Hi				5466.81	Pin 3R					
Hi (ft amsi) Station (ft) Rod (ft) Elevation (ft amsi) Comments Hi										
Hi (ft amsi) Station (ft) Rod (ft) Elevation (ft amsi) Comments Hi1 0.0 3.30 5468.83 Pin SL 17.0 3.30 5468.83 Pin SL 35.0 3.55 5468.58 61.0 4.58 5467.55 66.0 6.25 5465.88 In side channel out of side channel out of side channel in side				tion 5.0						
HI1 0.0 3.30 5468.83 Pin SL 17.0 3.30 5468.83 Pin SL 35.0 3.55 5468.58 61.0 4.58 5467.55 66.0 6.25 5465.88 in side channel 78.0 5.60 5466.33 out of side channel 80.5 6.35 5465.78 in side channel 93.0 6.96 5465.17 in side channel 93.0 6.96 5465.17 in side channel 18.5 5.07 5467.06 TOB 113.5 5.46 5466.67 TOB 113.5 5.46 5466.67 LEW 118.3 7.88 5464.09 LEW 118.7 8.70 5463.43 120.5 8.59 5463.63 125.4 7.90 5464.23 127.0 7.82 5463.63 125.4 7.90 5464.23 127.5 8.32 5463.61 129.8 8.45 5463.63 129.8 8.45 5463.63 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB										
17.0 3.20 5468.83 35.0 3.55 5466.58 61.0 4.58 5467.55 66.0 6.25 5465.85 In side channel 78.0 5.80 5466.33 out of side channel 80.5 6.35 5465.78 In side channel 89.0 7.16 5464.95 In side channel 93.0 6.96 5465.17 In side channel 108.5 5.07 5467.06 TOB 113.5 5.46 5466.67 114.5 8.05 5465.67 114.5 8.05 5464.08 LEW 118.3 7.88 5464.25 118.7 8.70 5463.43 120.5 8.99 5463.63 125.4 7.90 5463.63 125.4 7.90 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 150.0 2.90 5469.23 150.0 2.90 5469.23										
35.0 3.55 5468.58 61.0 4.58 5467.55 66.0 6.25 5465.88 In side channel 78.0 5.80 5465.33 out of side channel 89.0 7.16 5464.95 In side channel 93.0 6.96 5465.17 In side channel 108.5 5.67 5466.48 at large tree 108.5 5.67 5467.06 TOB 113.5 5.46 5466.67 114.5 8.05 5464.08 LEW 118.3 7.88 5464.25 118.7 8.70 5463.54 124.4 8.50 5463.63 125.4 7.90 5463.63 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 133.5 6.14 5465.99 edge of channel 133.5 6.14 5465.99 edge of channel 133.5 4.66 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23	HI1				MIT SL					
61.0 4.58 5467.55 66.0 6.25 3465.88 In side channel 78.0 5.80 5466.33 out of side channel 80.5 6.35 5465.78 In side channel 93.0 7.18 5464.95 In side channel 93.0 6.96 5465.17 In side channel 94.4 5.55 5466.48 at large tree 113.5 5.46 5466.67 114.5 8.05 5464.08 LEW 118.7 8.70 5463.43 120.5 8.59 5463.63 125.4 7.90 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.81 129.8 8.45 5463.81 129.8 8.45 5463.81 139.5 5.64 5466.49 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 133.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
66.0 6.25 5465.88 In side channel 78.0 5.80 5466.33 out of side channel 80.5 6.35 5465.78 In side channel 89.0 7.18 5464.95 In side channel 93.0 6.96 5465.17 In side channel 18.5 5.07 5467.06 TOB 113.5 5.46 5466.67 114.5 8.05 5464.08 LEW 118.3 7.88 5464.25 118.7 8.70 5463.43 120.5 8.59 5463.64 124.4 8.50 5463.63 125.4 7.90 5464.23 127.0 7.62 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 139.5 5.64 5466.49 TOB										
78.0 5.80 5466.33 out of side channel in side					in side channel					
80.5 6.35 5465.78 In side channel In side chan										
89.0 7.18 5464.95 In side channel In side chan										
93.0 6.96 5465.17 In side channel at large tree 108.5 5.07 5467.06 TOB 113.5 5.46 5466.67 114.5 8.05 5464.08 LEW 118.7 8.70 5463.43 120.5 8.59 5463.63 125.4 7.90 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.86 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
94.4 5.65 5465.48 at large free TOB 113.5 5.06 5466.67 TOB 1113.5 5.46 5466.67 TOB 114.5 8.05 5464.06 LEW 118.3 7.88 5464.25 118.7 8.70 5463.43 120.5 8.99 5463.54 124.4 8.50 5463.63 125.4 7.90 5464.23 127.0 7.82 5464.21 127.5 8.32 5463.81 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 150.0 2.90 5469.23 150.0 2.90 5469.23 150.0 2.90 5469.23 150.0 2.90 5469.23 150.0 2.90 5469.23										
108.5 5.07 5467.06 TOB 113.5 5.46 5466.67 114.5 8.05 5464.0B LEW 118.3 7.88 5464.25 118.7 8.70 5463.43 120.5 8.59 5463.54 124.4 8.50 5463.63 125.4 7.90 5464.23 127.0 7.62 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.66 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
113.5 5.46 5466.67 114.5 8.05 5464.08 LEW 118.7 7.88 5464.25 118.7 8.70 5463.43 120.5 8.59 5463.63 122.4 7.90 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
114.5 8.05 5464.08 LEW 118.3 7.86 5464.25 118.7 8.70 5463.43 120.5 8.59 5463.54 124.4 8.50 5463.63 125.4 7.50 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23					. 30					
118.3 7.88 5464.25 118.7 8.70 5463.43 120.5 8.59 5463.54 124.4 8.50 5463.63 125.4 7.90 5464.23 127.0 7.62 5464.31 127.5 8.32 5463.61 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.66 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23					LEW					
118.7 8.70 5463.43 120.5 8.59 5463.63 124.4 8.50 5463.63 125.4 7.90 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
120.5 8.59 5463.54 124.4 8.50 5463.63 125.4 7.50 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 136.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.50 5469.23 152.0 2.90 5469.23										
124.4 8.50 5463.63 125.4 7.90 5464.23 127.5 8.32 5463.61 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
125.4 7.90 5464.23 127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
127.0 7.82 5464.31 127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
127.5 8.32 5463.81 129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.66 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
129.8 8.45 5463.68 132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
132.2 7.94 5464.19 REW 138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23 158.0 2.90 5469.23										
138.5 6.14 5465.99 edge of channel 139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23 158.0 2.90 5469.23					REW					
139.5 5.64 5466.49 TOB 143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23										
143.5 4.68 5467.45 150.0 2.90 5469.23 152.0 2.90 5469.23 158.0 2.90 5469.23										
150.0 2.90 5469.23 152.0 2.90 5469.23 158.0 2.90 5469.23										
152.0 2.90 5469.23 158.0 2.90 5469.23										
158.0 2.90 5469.23										
		158.0		5469.23						
		163.6			Pin 5R					

Figure 12. Site 4830 Reduced Cross Section Survey Notes.

5.2 Site 4830 HEC-RAS Modeling

The five surveyed cross sections were input to the HEC-RAS modeling software (Figure 13).

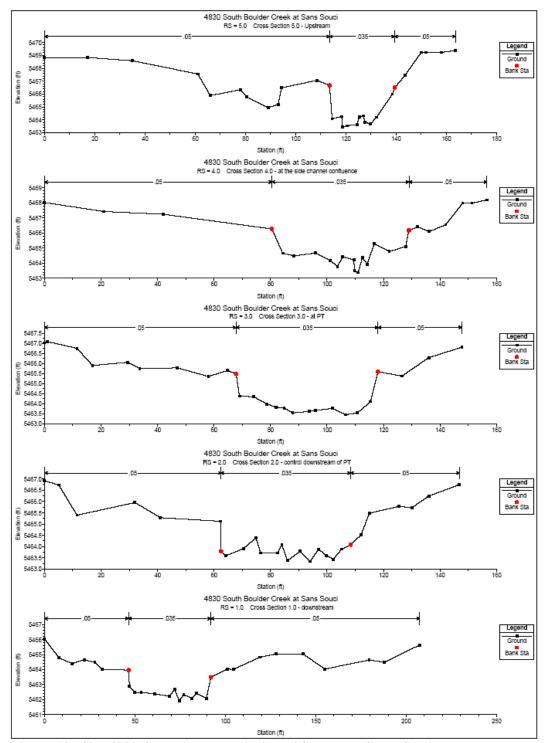


Figure 13. Site 4830 Graphical Description of Surveyed Cross Sections.

Manning's n value for the main channel sections was set to 0.035. Overbank sections were set to 0.5.

Downstream normal depth control was assumed as the modeling boundary condition, with the downstream channel bed slope assumed to be the channel slope of the surveyed reach of 0.0058 ft/ft. A range of flow conditions was simulated. The maximum flow simulated was the highest discharge where the model-predicted water surface elevation was contained completely within the surveyed cross sections. The predicted water surface at this point, 1,200 cfs, is presented in Figure 14.

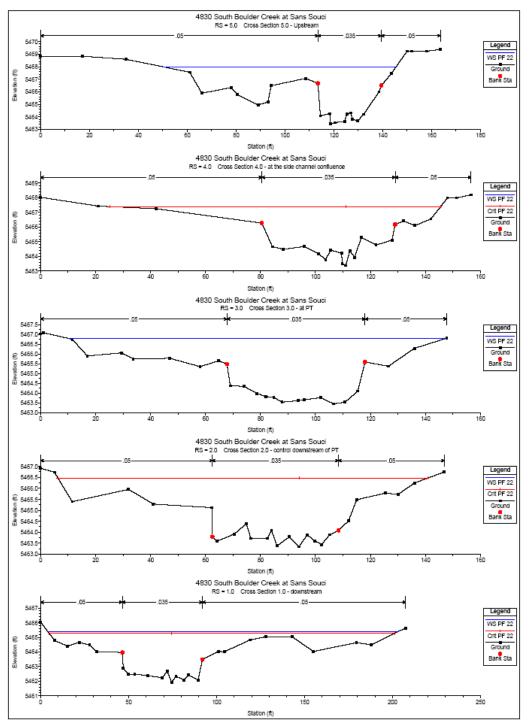


Figure 14. Site 4830 HEC-RAS Water Surface Elevations at Maximum Flow at Cross Section 3.0.

Reach	River Sta	Profile	Q Total (cfs)	Min Ch El	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ff)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width	Froude # Chi
4830	5.0	PF 1	0.10	5463.43	5463.66		5463.66	0.000324	0.17	0.60	5.86	0.09
4830	5.0	PF 2	1.00	5463.43	5463.95		5463.95	0.000327	0.33	3.02	10.16	0.11
4830	5.0	PF 3	5.00	5463.43	5464.33		5464.34	0.000664	0.61	8.15	18.27	0.16
4830	5.0	PF 4	10.00	5463.43	5464.54		5464.55	0.000752	0.82	12.15	19.10	0.18
4830	5.0	PF 5	50.00	5463.43	5465.17		5465.23	0.002049	2.00	25.53	27.67	0.33
4830	5.0	PF 6	100.00	5463.43	5465.54		5465.67	0.003245	2.91	37.02	33.45	0.43
4830 4830	5.0	PF 8	200.00 300.00	5463.43 5463.43	5466.00 5466.32		5466.25 5466.69	0.005172	4.20 5.10	53.69 69.61	42.41 54.75	0.56 0.63
	5.0	PF 10						0.007287				0.68
4830 4830	5.0	PF 14	400.00 500.00	5463.43 5463.43	5466.60 5466.85		5467.06 5467.39		5.83 6.35	85.04 101.44	59.67 69.98	0.70
4830	5.0	PF 16	600.00	5463.43	5467.09		5467.68	0.007520 0.007496	6.74	119.83	79.63	0.70
4830	5.0	PF 17	700.00	5463.43	5467.35		5467.93	0.006851	6.83	140.16	81.44	0.69
4830	5.0	PF 18	800.00	5463.43	5467.52		5468.14	0.006922	7.12	154.59	82.66	0.70
4830	5.0	PF 19	900.00	5463.43	5467.66		5468.34	0.007379	7.56	165.82	85.84	0.73
4830	5.0	PF 20	1000.00	5463.43	5467.77		5468.54	0.007888	8.00	176.17	89.26	0.76
4830	5.0	PF 21	1100.00	5463.43	5467.90		5468.72	0.008272	8.38	187.10	92.73	0.78
4830	5.0	PF 22	1200.00	5463.43	5467.98		5468.89	0.008864	8.82	195.55	95.33	0.81
4830	4.0	PF 1	0.10	5463.38	5463.64		5463.64	0.000705	0.33	0.30	1.72	0.14
4830	4.0	PF 2	1.00	5463.38	5463.88		5463.90	0.005802	1.21	0.82	3.11	0.42
4830	4.0	PF 3	5.00	5463.38	5464.13		5464.22	0.020212	2.47	2.03	6.88	0.80
4830	4.0	PF 4	10.00	5463.38	5464.27	5464.27	5464.42	0.029295	3.09	3.24	10.61	0.99
4830	4.0	PF 5	50.00	5463.38	5464.81		5464.98	0.017317	3.27	15.31	32.89	0.84
4830 4830	4.0	PF6 PF8	100.00	5463.38	5465.10 5465.48		5465.33 5465.81	0.016195 0.013570	3.84 4.63	26.07 43.18	42.07 45.85	0.86 0.84
4830	4.0	PF 10	300.00	5463.38 5463.38	5465.48 5465.78		5465.81	0.013570	4.63 5.26	43.18 56.99	45.85	0.84
4830	4.0	PF 10 PF 12	400.00	5463.38 5463.38	5465.78		5466.55	0.012517	5.25	56.99	46.89	0.84
4830	4.0	PF 14	500.00	5463.38	5466.23	5466.08	5466.86	0.012136	6.37	78.73	52,47	0.88
4830	4.0	PF 16	600.00	5463.38	5466.39	5466.31	5467.14	0.012323	6.95	87.70	63.14	0.92
4830	4.0	PF 17	700.00	5463.38	5466.54	5466.54	5467.39	0.013615	7.44	97.81	71.62	0.95
4830	4.0	PF 18	800.00	5463.38	5466.74	5466.74	5467.62	0.012420	7.60	113.24	80.57	0.92
4830	4.0	PF 19	900.00	5463.38	5466.92	5466.92	5467.83	0.011626	7.76	128.55	88.45	0.90
4830	4.0	PF 20	1000.00	5463.38	5467.09	5467.09	5468.02	0.011009	7.92	144.02	95.74	0.89
4830	4.0	PF 21	1100.00	5463.38	5467.23	5467.23	5468.19	0.010745	8.12	158.07	101.92	0.88
4830	4.0	PF 22	1200.00	5463.38	5467.40	5467.40	5468.37	0.010115	8.21	176.49	120.30	0.87
4830	3.0	PF 1	0.10	5463.45	5463.56		5463.56	0.002302	0.27	0.38	7.99	0.22
4830	3.0	PF 2	1.00	5463.45	5463.70		5463.70	0.001719	0.41	2.42	21.15	0.22
4830	3.0	PF 3	5.00	5463.45 5463.45	5463.87		5463.87	0.002017	0.70	7.17	32.32	0.26
4830 4830	3.0	PF 5	10.00 50.00	5463.45	5463.97		5463.99 5464.43	0.002342	0.93	10.77	35.40	0.30 0.43
4830	3.0	PF 6	100.00	5463.45	5464.38 5464.65		5464.45	0.004071	1.86 2.53	26.84 39.48	46.89 47.65	0.43
4830	3.0	PF 8	200.00	5463.45	5465.03		5465.22	0.005306	3.45	58.02	48.73	0.49
4830	3.0	PF 10	300.00	5463.45	5465.34		5465.60	0.005695	4.11	73.08	49.60	0.60
4830	3.0	PF 12	400.00	5463.45	5465.61		5465.93	0.005852	4.61	89.39	75.41	0.62
4830	3.0	PF 14	500.00	5463.45	5465.83	5465.32	5466.21	0.005935	5.03	108.17	98.48	0.64
4830	3.0	PF 16	600.00	5463.45	5466.06	5465.57	5466.47	0.005512	5.24	133.31	117.68	0.63
4830	3.0	PF 17	700.00	5463.45	5466.25	5465.85	5466.68	0.005360	5.45	155.55	120.81	0.62
4830	3.0	PF 18	800.00	5463.45	5466.37		5466.85	0.005757	5.83	169.55	123.62	0.65
4830	3.0	PF 19	900.00	5463.45	5466.48		5467.01	0.006001	6.15	184.42	127.05	0.67
4830	3.0	PF 20	1000.00	5463.45	5466.59		5467.17	0.006228	6.44	198.56	130.24	0.69
4830	3.0	PF 21	1100.00	5463.45	5466.71		5467.31	0.006340	6.67	213.50	133.52	0.70
4830	3.0	PF 22	1200.00	5463.45	5466.80		5467.45	0.006620	6.96	225.70	137.22	0.72
4030	2.0	PF 1	0.40	5463.34	5453.43		5453.40	0.000550	0.56	2.42	3.54	0.44
4830 4830	2.0	PF 2	0.10 1.00	5463.34	5463.47 5463.63		5463.48 5463.64	0.009659	0.73	0.18 1.37	3.64 12.23	0.38
4830	2.0	PF 3	5.00	5463.34	5463.71	5463.69	5463.77	0.030814	2.01	2.49	17.58	0.94
4830	2.0	PF 4	10.00	5463.34	5463.79	5463.79	5463.86	0.030634	2.13	4.69	30.20	0.95
4830	2.0	PF 5	50.00	5463.34	5464.06	5464.06	5464.25	0.027024	3.44	14.53	41.59	1.03
4830	2.0	PF 6	100.00	5463.34	5464.28	5464.28	5464.55	0.022453	4.17	24.12	46.37	1.00
4830	2.0	PF8	200.00	5463.34	5464.59	5464.59	5465.01	0.019103	5.17	39.46	49.87	1.00
4830	2.0	PF 10	300.00	5463.34	5464.85	5464.85	5465.38	0.017612	5.91	52.10	50.69	1.00
4830	2.0	PF 12	400.00	5463.34	5465.07	5465.07	5465.71	0.016362	6.47	63.79	51.43	0.99
4830	2.0	PF 14	500.00	5463.34	5465.35	5465.35	5466.01	0.013292	6.62	81.11	74.46	0.93
4830	2.0	PF 16	600.00	5463.34	5465.50	5465.50	5466.27	0.013884	7.18	92.53	81.59	0.96
4830	2.0	PF 17	700.00	5463.34	5465.76	5465.76	5466.49	0.011368	7.13	116.70	107.59	0.89
4830 4830	2.0	PF 18 PF 19	800.00 900.00	5463.34 5463.34	5466.01 5466.15	5466.01 5466.15	5466.69 5466.85	0.009160	6.93 7.14	147.13 164.48	124.82 127.08	0.81
4830	2.0	PF 20	1000.00	5463.34	5466.25	5466.25	5467.00	0.009962	7.14	177.09	127.00	0.83
4830	2.0	PF 21	1100.00	5463.34	5466.36	5466.36	5467.14	0.009279	7.70	191.27	131.62	0.84
4830	2.0	PF 22	1200.00	5463.34	5466.47	5466.47	5467.28	0.009287	7.89	205.89	134.53	0.85
												2.50
4830	1.0	PF 1	0.10	5461.93	5462.05	5462.05	5462.09	0.048259	1.42	0.07	1.17	1.01
4830	1.0	PF 2	1.00	5461.93	5462.19	5462.19	5462.24	0.046118	1.70	0.59	7.24	1.05
4830	1.0	PF 3	5.00	5461.93	5462.44	5462.34	5462.46	0.005796	0.97	5.15	31.08	0.42
4830	1.0	PF 4	10.00	5461.93	5462.54	5462.41	5462.56	0.005800	1.17	8.58	39.35	0.44
4830	1.0	PF 5	50.00	5461.93	5462.89	5462.68	5462.96	0.005811	2.12	23.57	43.95	0.51
4830	1.0	PF 6	100.00	5461.93	5463.17	5462.89	5463.29	0.005805	2.78	36.02	44.58	0.54
4830	1.0	PF 8	200.00	5461.93	5463.60	5463.21	5463.80	0.005802	3.63	55.23	47.18	0.58
4830	1.0	PF 10	300.00	5461.93	5463.93	5463.48	5464.21	0.005804	4.25	71.98	52.82	0.60
4830	1.0	PF 12	400.00	5461.93	5464.21	5463.73	5464.55	0.005808	4.73	91.89	86.82	0.62
4830	1.0	PF 14	500.00	5461.93	5464.43	5463.95	5464.82	0.005804	5.11	113.54	105.58	0.63
4830	1.0	PF 16	600.00	5461.93	5464.63 5464.79	5464.26	5465.05	0.005801	5.43	137.63	144.78	0.64
4830 4830	1.0	PF 17 PF 18	700.00 800.00	5461.93 5461.93	5464.79 5464.94	5464.46 5464.74	5465.25 5465.41	0.005810	5.70 5.93	162.87 186.67	157.91 168.55	0.65
4830	1.0	PF 19	900.00	5461.93	5465.08	5464.87	5465.58	0.005806	6.15	211.92	191.96	0.66
4830	1.0	PF 20	1000.00	5461.93	5465.19	5464.97	5465.70	0.005804	6.32	234.01	194.64	0.66
4830	1.0	PF 21	1100.00	5461.93	5465.30	5465.03	5465.82	0.005800	6.47	255.05	197.16	0.67
4830	1.0	PF 22	1200.00	5461.93	5465.40	5465.27	5465.94	0.005803	6.63	275.10	199.53	0.67
Ei ann	15				ACM						•	•

Figure 15. Site 4830 HEC-RAS Model Output.

An instantaneous discharge measurement was taken using a Marsh-McBirney flowmeter on January 26, 2006. Water depth and velocity were measured across the channel at a cross section between surveyed Sections 5.0 and 4.0. The calculation of the channel discharge from the depth

and velocity measurements is presented in Figure 16.

and ve	and velocity measurements is presented in Figure 16.										
discharge measurements notes											
								start			
Location:	site 2830 s	outh soulde	r ck at sans	project:	A212-UD	co matings	s pevelopment	rine (hrs):	1435 mst	weather: sunny,	cool and windy
								start			
meter:	Marsh-Mcmin	ney		pate:	Jan 26,	2006		stage(It):	5463.98	_cross section:	downstream of cross section 5.0
serial No.				party:	наппа/м	right		rine(hrs):	1505 nst	dage condition:	clear, some vegetation/leaves
								stop			
computed By:	наппа	pate:	1/26/2006	checked By:	spotts	nate:	1/26/2006	scage (IC):	5463.98	other:	
-7.			2,20,2000	-7.	-		2,20,2000	-			
		rotal	water				Mean and/				
gtation		nepth of water	surface ro sot.	Effect.		point	or row cor.	cell	ce11		
(ft)		(ft)	of Ice		prop.	velocity	velocity		pisch.		
			(ft)		pepth	(ft/sec)	(ft/sec)	(sq ft)	(cfs)		other/comments
0.50	TEM	0.00									
3.00	1.25	0.40		0.40		0.00	0.00	0.50	0.000		
4.00	0.95	0.40		0.40		0.52	0.69	0.38	0.252		
4.90	1.00	0.73		0.73		1.21	1.21	0.73	0.883		
6.00	0.95	0.50		0.50		0.79	0.79	0.48	0.379		
6.80 7.70	0.85	0.60		0.60		1.38	0.89	0.51	0.454		
8.90	1.25	0.70		0.70		1.15	1.15	0.56	1.012		
10.20	1.35	0.70		0.70		0.66	0.66	0.95	0.627		
11.60	1.40	0.50		0.50		0.36	0.36	0.70	0.252		
13.00	1.20	0.45		0.45		0.10	0.10	0.54	0.054		
15.00	1.35	0.40		0.40		0.26	0.26	0.54	0.140		
16.70	1.95	0.40		0.40		0.07	0.07	0.78	0.055		
18.90	0.00	0.00		0.00		0.00	0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
	0.00			0.00			0.00	0.00	0.000		
TOTALG	16.55							5.33	5.175		
l											

Figure 16. Site 4830 Flow Measurement Calculation.

The predicted water surface elevations describing the stage—discharge rating at Cross-Section 3.0 are presented in Figure 17.

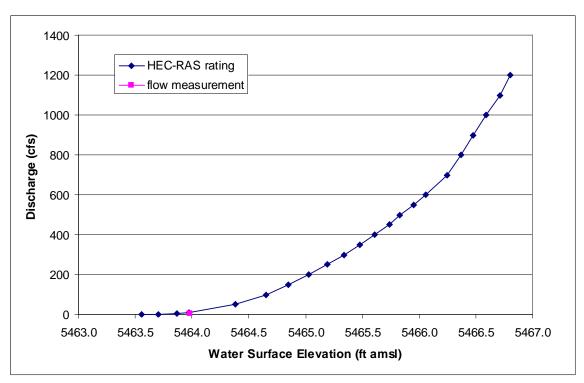


Figure 17. Site 4830 Predicted Stage – Discharge Rating.

5.3 Site 4830 Depth above PT Discharge Rating

The rating desired by UDFCD is expressed as stream discharge as a function of water depth at the PT. The reference elevation for the PT is set to the stream bed elevation at the PT cross section (5,463.45 ft amsl). The minimum channel elevation at all cross sections downstream of the PT is lower, therefore the zero flow depth at the PT cross section is 0.0 feet. These values are used to calculate depth of water above the PT from the HEC-RAS water surface elevation predictions for a range of discharge values. The stage-discharge rating is shown in Table 1. The current UDFCD rating is presented in Table 2.

Table 1. Site 4830 Stage-Discharge Rating.

Water Surface Elevation (ft	Depth above the PT	Discharge	Condition
amsl)	(ft) ¹	(cfs)	
5,463.45	0.0	0	
5,463.56	0.11	0.1	
5,463.70	0.25	1	
5,463.87	0.42	5	
5,463.97	0.52	10	
5,464.38	0.93	50	
5,464.65	1.2	100	
5,464.85	1.4	150	
5,465.03	1.58	200	
5,465.19	1.74	250	
5,465.34	1.89	300	
5,465.48	2.03	350	
5,465.61	2.16	400	
5,465.74	2.29	450	
5,465.83	2.38	500	
5,465.95	2.5	550	
5,466.06	2.61	600	
5,466.25	2.8	700	
5,466.37	2.92	800	
5,466.48	3.03	900	
5,466.59	3.14	1,000	
5,466.71	3.26	1,100	
5,466.80	3.35	1,200	Flow overbank, standpipe base flooded

¹ Depth is calculated as predicted water surface elevation minus minimum surveyed channel elevation at Cross-Section 3.0 (5,463.45 ft amsl)

Table 2. Current UDFCD Rating for Site 4830.

	. \varTheta
Depth (ft)	Discharge (cfs)
0	0
0.25	5
1	50
1.4	100
2.7	500
3.85	1,500
5.2	5,740
5.9	10,300

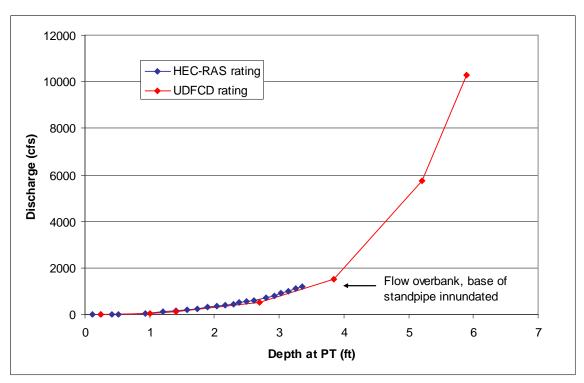


Figure 18. Site 4830 Stage-Discharge Rating Comparisons.

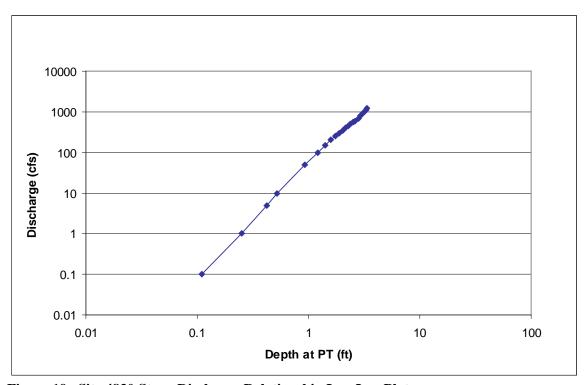


Figure 19. Site 4830 Stage-Discharge Relationship Log-Log Plot.

5.4 Site 4830 Discussion of Rating Results

The stage-discharge rating developed for Site 4830 utilized detailed cross section survey data and one-dimensional steady flow modeling to calculate water surface elevations for a range of discharges. The range of discharges for this rating describes zero flow depth at the low end to the discharge at the point where water begins to flow over the right river bank at the PT cross section.

The rating of the depth of water above the PT is based on the reference level of the minimum channel elevation at the PT cross section of 5,463.45 ft amsl or 2.40 ft below the top of the PT riser pipe with the cap removed. Before using this rating with confidence, the elevation of the installed PT should be verified in the field and a field verification of water depth above the reference level should be performed using the installed PT reading and a field measurement of water surface elevation.

The current UDFCD rating compares well with the rating developed here for discharge as a function of depth above the channel bed. However, the elevation of the channel bed at the PT cross section was measured at 5,463.45 ft amsl, compared to 5,471 ft amsl measured by UDFCD.

At high flows at this site (3-ft of depth at the PT), a small split-flow will develop upstream of the PT cross section and follow channels shown in Figure 9. This discharge is predicted to flow into the main river channel and be measured at the PT location.

6.0 REFERENCES

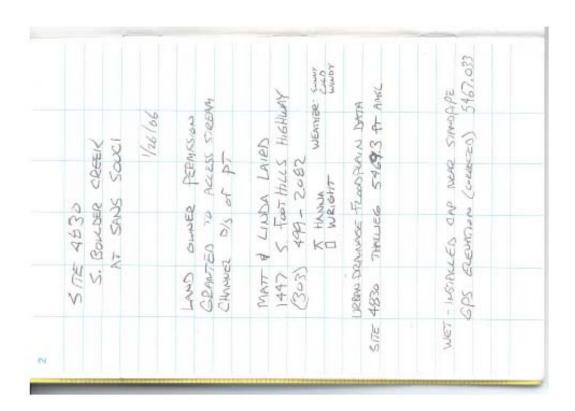
Arcement, G.J., and Schneider, V.R. (1990). "Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains." United States Geological Survey Water-Supply Paper 2339.

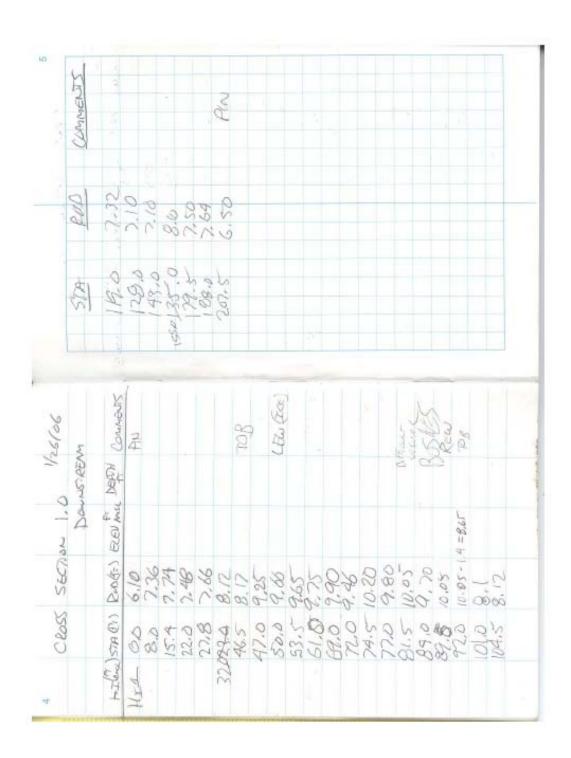
Barnes, H.H. (1987). "Roughness Characteristics of Natural Channels." U.S. Geological Survey Water-Supply Paper 1849. United States Government Printing Office, Washington. D.C.

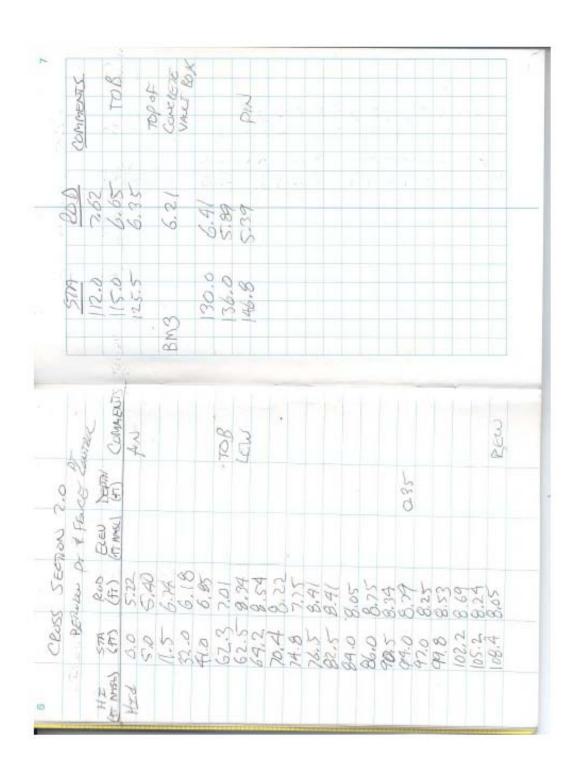
Benson, M.A., and Dalrymple, T. (1984). "General Field and Office Procedures for Indirect Discharge Measurements." Techniques for Water-Resources Investigations of the United States Geological Survey, Book 3 Applications of Hydraulics, Chapter A1. United States Government Printing Office, Washington, D.C.

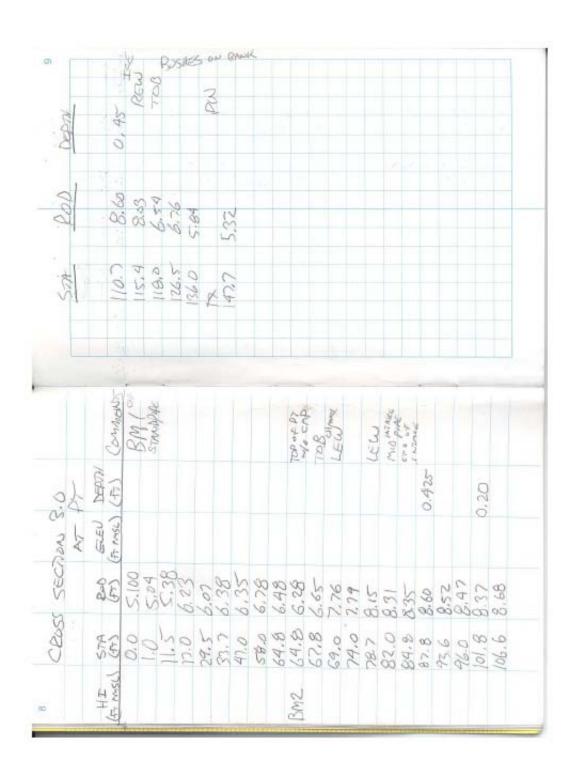
Dalrymple, T., and Benson, M.A. (1984). "Measurement of Peak Discharge by the Slope-Area Method." Techniques for Water-Resources Investigations of the United States Geological Survey, Book 3 Applications of Hydraulics, Chapter A2. United States Government Printing Office, Washington, D.C.

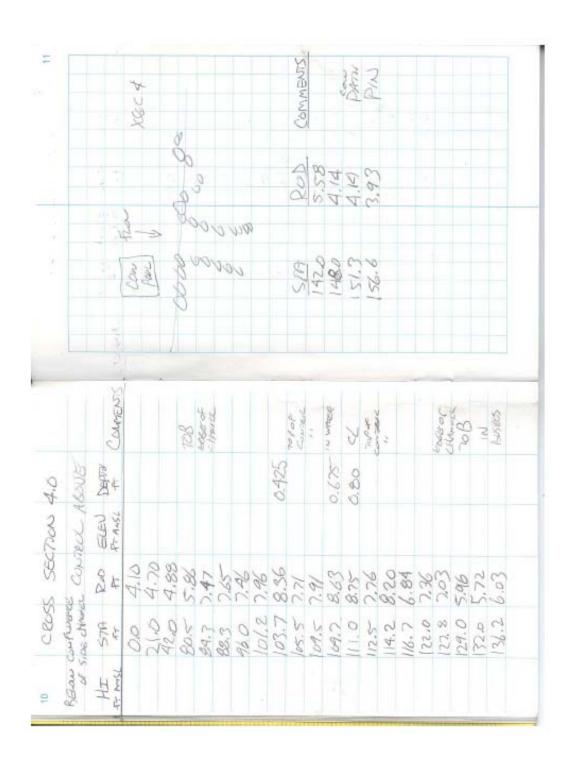
Harrelson, C.C., Rawlins, C.L., and Potyondy, J.P. (1994). "Stream Channel Reference Sites: An Illustrated Guide to Field Technique." General Technical Report RM-245. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. Fort Collins, Colorado


Schulz, E.F. (1974). "Problems in Applied Hydrology." Water Resources Publications, Fort Collins, Colorado.


U.S. Army Corps of Engineers, Hydrologic Engineering Center. (2002). "HEC-RAS River Analysis System." Version 3.1 User's Manual, Hydraulic Reference Manual, and Applications Guide. Institute for Water Resources, Davis, California.


U.S. Geological Survey. (1977). "National Handbook of Recommended Methods for Water-Data Acquisition." U.S. Department of the Interior, Prepared under the sponsorship of the Office of Water Data Coordination, Geological Survey, Chapter 1, Surface Water. Reston, Virginia.


U.S. Geological Survey. (2005). Aerial Photography via Terraserver.


7.0 SURVEY FIELD NOTES

